ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracking down the origin of superbubbles and supergiant shells in the Magellanic Clouds with Minkowski tensor analysis

38   0   0.0 ( 0 )
 نشر من قبل Caroline Collischon
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an automatic bubble-recognition routine based on Minkowski functionals (MF) and tensors (MT) to detect bubble-like interstellar structures in optical emission line images. Minkowski functionals and MT are powerful mathematical tools for parameterizing the shapes of bodies. Using the papaya2-library, we created maps of the desired MF or MT of structures at a given window size. We used maps of the irreducible MT $psi_2$, which is sensitive to elongation, to find filamentary regions in H$alpha$, [SII], and [OIII] images of the Magellanic Cloud Emission Line Survey (MCELS). Using the phase of $psi_2$, we were able to draw lines perpendicular to each filament and thus obtain line-density maps. This allowed us to find the center of a bubble-like structure and to detect structures at different window sizes. The detected bubbles in all bands are spatially correlated to the distribution of massive stars, showing that we indeed detect interstellar bubbles without large spatial bias. Eighteen out of 59 supernova remnants in the Large Magellanic Cloud (LMC) and 13 out of 20 superbubbles are detected in at least one wavelength. The lack of detection is mostly due to surrounding emission that disturbs the detection, a too small size, or the lack of a (circular) counterpart in our emission line images. In line-density maps at larger scales, maxima can be found in regions with high star formation in the past, often inside supergiant shells (SGS). In SGS LMC 2, there is a maximum west of the shell where a collision of large gas clouds is thought to have occurred. In the Small Magellanic Cloud (SMC), bubble detection is impaired by the more complex projected structure of the galaxy. Line maps at large scales show large filaments in the SMC in a north-south direction, especially in the [SII] image. The origin of these filaments is unknown.

قيم البحث

اقرأ أيضاً

108 - Laura G. Book 2007
Nine supergiant shells (SGSs) have been identified in the Large Magellanic Cloud (LMC) based on H-alpha images, and twenty-three SGSs have been reported based on HI 21-cm line observations, but these sets do not always identify the same structures. W e have examined the physical structure of the optically identified SGSs using HI channel maps and P-V diagrams to analyze the gas kinematics. There is good evidence for seven of the nine optically identified SGSs to be true shells. Of these seven H-alpha SGSs, four are the ionized inner walls of HI SGSs, while three are an ionized portion of a larger and more complex HI structure. All of the H-alpha SGSs are identified as such because they have OB associations along the periphery or in the center, with younger OB associations more often found along the periphery. After roughly 12 Myrs, if no new OB associations have been formed a SGS will cease to be identifiable at visible wavelengths. Thus, the presence and location of ionizing sources is the main distinction between shells seen only in HI and those also seen in H-alpha. Based on our analysis, H-alpha observations alone cannot unambiguously identify SGSs, especially in distant galaxies.
We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between HI and 12CO(J=1-0) in supergiant shells (SGSs), we find that the molecular fract ion in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects (~70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that ~12-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to ~4-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.
We present a study of the discrete clouds and filaments in the Magellanic Stream using a new high-resolution survey of neutral hydrogen (HI) conducted with H75 array of the Australia Telescope Compact Array, complemented by single-dish data from the Parkes Galactic All-Sky Survey (GASS). From the individual and combined datasets, we have compiled a catalog of 251 clouds and list their basic parameters, including a morphological description useful for identifying cloud interactions. We find an unexpectedly large number of head-tail clouds in the region. The implication for the formation mechanism and evolution is discussed. The filaments appear to originate entirely from the Small Magellanic Cloud and extend into the northern end of the Magellanic Bridge.
We investigate the effects of Supergiant Shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. $^{12}$CO ($J$ =3-2, 1-0) and $^{13}$CO ($J$=1-0) observations with the ASTE and Mopra telescopes have been carried out towards these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities ($n({rm H}_2)$) of the clumps are distributed from low to high density ($10^3$-$10^5$ cm$^{-3}$) and their kinetic temperatures ($T_{rm kin}$) are typically high (greater than $50$ K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of H$alpha$, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density HI envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high $n({rm H}_2)$ and $T_{rm kin}$, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.
84 - Laura G. Book 2009
We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects (YSOs) reveal the current ongoing star formation. Distributions of ionized, H I, and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا