ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of Supergiant Shells in the Large Magellanic Cloud

176   0   0.0 ( 0 )
 نشر من قبل Laura Book
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laura G. Book




اسأل ChatGPT حول البحث

Nine supergiant shells (SGSs) have been identified in the Large Magellanic Cloud (LMC) based on H-alpha images, and twenty-three SGSs have been reported based on HI 21-cm line observations, but these sets do not always identify the same structures. We have examined the physical structure of the optically identified SGSs using HI channel maps and P-V diagrams to analyze the gas kinematics. There is good evidence for seven of the nine optically identified SGSs to be true shells. Of these seven H-alpha SGSs, four are the ionized inner walls of HI SGSs, while three are an ionized portion of a larger and more complex HI structure. All of the H-alpha SGSs are identified as such because they have OB associations along the periphery or in the center, with younger OB associations more often found along the periphery. After roughly 12 Myrs, if no new OB associations have been formed a SGS will cease to be identifiable at visible wavelengths. Thus, the presence and location of ionizing sources is the main distinction between shells seen only in HI and those also seen in H-alpha. Based on our analysis, H-alpha observations alone cannot unambiguously identify SGSs, especially in distant galaxies.



قيم البحث

اقرأ أيضاً

The binary fraction of unevolved massive stars is thought to be 70-100% but there are few observational constraints on the binary fraction of the evolved version of a subset of these stars, the red supergiants (RSGs). Here we identify a complete samp le of RSGs in the Large Magellanic Cloud (LMC) using new spectroscopic observations and archival UV, IR and broadband optical photometry. We find 4090 RSGs with log L/Lo > 3.5 with 1820 of them having log L/Lo > 4, which we believe is our completeness limit. We additionally spectroscopically confirmed 38 new RSG+B star binaries in the LMC, bringing the total known up to 55. We then estimated the binary fraction using a k-nearest neighbors algorithm that classifies stars as single or binary based on photometry with a spectroscopic sample as a training set. We take into account observational biases such as line-of-sight stars and binaries in eclipse while also calculating model-dependent corrections for RSGs with companions that our observations were not designed to detect. Based on our data, we find an initial result of 13.5 +7.56/-6.67% for RSGs with O or B-type companions. Using the Binary Population and Spectral Synthesis (BPASS) models to correct for unobserved systems, this corresponds to a total RSG binary fraction of 19.5 +7.6/-6.7%. This number is in broad agreement with what we would expect given an initial OB binary distribution of 70%, a predicted merger fraction of 20-30% and a binary interaction fraction of 40-50%.
We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between HI and 12CO(J=1-0) in supergiant shells (SGSs), we find that the molecular fract ion in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects (~70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that ~12-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to ~4-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.
I review our understanding of the structure and kinematics of the Large Magellanic Cloud (LMC), with a particular focus on recent results. This is an important topic, given the status of the LMC as a benchmark for studies of microlensing, tidal inter actions, stellar populations, and the extragalactic distance scale. I address the observed morphology and kinematics of the LMC; the angles under which we view the LMC disk; its in-plane and vertical structure; the LMC self-lensing contribution to the total microlensing optical depth; the LMC orbit around the Milky Way; and the origin and interpretation of the Magellanic Stream. Our understanding of these topics is evolving rapidly, in particular due to the many large photometric and kinematic datasets that have become available in the last few years. It has now been established that: the LMC is considerably elongated in its disk plane; the LMC disk is thicker than previously believed; the LMC disk may have warps and twists; the LMC may have a pressure-supported halo; the inner regions of the LMC show unexpected complexities in their vertical structure; and precession and nutation of the LMC disk plane contribute measurably to the observed line-of-sight velocity field. However, many open questions remain and more work is needed before we can expect to converge on a fully coherent structural, dynamical and evolutionary picture that explains all observed features of the LMC.
We derive structural parameters and evidence for extended tidal debris from star count and preliminary standard candle analyses of the Large Magellanic Cloud based on Two Micron All Sky Survey (2MASS) data. The full-sky coverage and low extinction in K_s presents an ideal sample for structural analysis of the LMC. The star count surface densities and deprojected inclination for both young and older populations are consistent with previous work. We use the full areal coverage and large LMC diameter to Galactrocentric distance ratio to infer the same value for the disk inclination based on perspective. A standard candle analysis based on a sample of carbon long-period variables (LPV) in a narrow color range, 1.6<J-K_s<1.7 allows us to probe the three-dimensional structure of the LMC along the line of sight. The intrinsic brightness distribution of carbon LPVs in selected fields implies that $sigma_Msimlt 0.2^m$ for this color cut. The sample provides a {it direct} determination of the LMC disk inclination: $42.3^circpm 7.2^circ$. Distinct features in the photometric distribution suggest several distinct populations. We interpret this as the presence of an extended stellar component of the LMC, which may be as thick as 14 kpc, and intervening tidal debris at roughly 15 kpc from the LMC.
194 - Ming Yang , B. W. Jiang 2010
From previous samples of Red Supergiants (RSGs) by various groups, 191 objects are assembled to compose a large sample of RSG candidates in LMC. For 189 of them, the identity as a RSG is verified by their brightness and color indexes in several near- and mid-infrared bands related to the 2MASS JHKs bands and the Spitzer/IRAC and Spitzer/MIPS bands. From the visual time-series photometric observations by the ASAS and MACHO projects which cover nearly 8-10 years, the period and amplitude of light variation are analyzed carefully using both the PDM and Period04 methods. According to the properties of light variation, these objects are classified into five categories: (1) 20 objects are saturated in photometry or located in crowded stellar field with poor photometric results, (2) 35 objects with too complex variation to have any certain period, (3) 23 objects with irregular variation, (4) 16 objects with semi-regular variation, and (5) 95 objects with Long Secondary Period (LSP) among which 31 have distinguishable short period, and 51 have a long period shorter than 3000 days that can be determined with reasonable accuracy. For the semi-regular variables and the LSP variables with distinguishable short period, the period-luminosity relation is analyzed in the visual, near-infrared and mid-infrared bands. It is found that the P-L relation is tight in the infrared bands such as the 2MASS JHKs bands and the Spitzer/IRAC bands, in particular in the Spitzer/IRAC [3.6] and [4.5] bands; meanwhile, the P-L relation is relatively sparse in the V band which may be caused by the inhomogeneous interstellar extinction. The results are compared with others P-L relationships for RSGs and the P-L sequences of red giants in LMC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا