ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation Around Supergiant Shells in the LMC

140   0   0.0 ( 0 )
 نشر من قبل Laura Book
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laura G. Book




اسأل ChatGPT حول البحث

We examine the recent star formation associated with four supergiant shells (SGSs) in the Large Magellanic Cloud (LMC): LMC 1, 4, 5, and 6, which have been shown to have simple expanding-shell structures. H II regions and OB associations are used to infer star formation in the last few Myr, while massive young stellar objects (YSOs) reveal the current ongoing star formation. Distributions of ionized, H I, and molecular components of the interstellar gas are compared with the sites of recent and current star formation to determine whether triggering has taken place. We find that a great majority of the current star formation has occurred in gravitationally unstable regions, and that evidence of triggered star formation is prevalent at both large and local scales.



قيم البحث

اقرأ أيضاً

We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between HI and 12CO(J=1-0) in supergiant shells (SGSs), we find that the molecular fract ion in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects (~70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that ~12-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to ~4-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.
Betelgeuse, a nearby red supergiant, is a runaway star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuses wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have significantly more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova lightcurve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.
We investigate the effects of Supergiant Shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. $^{12}$CO ($J$ =3-2, 1-0) and $^{13}$CO ($J$=1-0) observations with the ASTE and Mopra telescopes have been carried out towards these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities ($n({rm H}_2)$) of the clumps are distributed from low to high density ($10^3$-$10^5$ cm$^{-3}$) and their kinetic temperatures ($T_{rm kin}$) are typically high (greater than $50$ K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of H$alpha$, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density HI envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high $n({rm H}_2)$ and $T_{rm kin}$, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.
The origin of the arc-shaped Sh2-296 nebula is still unclear. Mainly due to its morphology, the nebula has been suggested to be a 0.5 Myr-old supernova remnant (SNR) that could be inducing star formation in the CMa OB1 association. We aim to show, fo r the first time, that the nebula is part of a large, shell-like structure, which we have designated the ``CMa shell, enclosing a bubble created by successive supernova (SN) explosions. We identified three runaway stars, associated with bow-shock structures, in the direction of the CMa shell and we investigate the possibility that they have originated in the center of the shell. By analyzing images of the CMa OB1 association at several wavelengths, we clearly see that the Sh2-296 nebula is in fact part of a large structure, which can be approximated by a large (with a diameter of ~60 pc) elliptical shell. Using the recent Gaia-DR2 astrometric data, we trace back the path of the three runaway stars, in order to find their original position in the past, with relation to the CMa shell. We also revise the heating and ionization of the Sh2-296 nebula, by comparing the photon budget provided by the O stars in the region with results from radio observations. We find that the runaway stars have likely been ejected from a Trapezium-like progenitor cluster on three successive SN explosions having taken place ~6, ~2 and ~1 Myr ago. We also show that the few late-type O stars in the region cannot explain the ionization of the Sh~2-296 nebula and other mechanisms need to be at work. We argue that, though we now have evidence for several SNe events in the CMa OB1 association, the SNe probably played a minor role in triggering star formation in these clouds. In contrast, the CMa OB1 association, as it is now, likely testifies to the last stages of a star-forming region.
347 - Piyali Saha 2021
The presence of three more Herbig Ae/Be (HAeBe) stars in the Cepheus Flare within a 1.5$^{circ}$ radius centered on HD 200775 suggests that star formation is prevalent in a wider region of the LDN 1147/1158, LDN 1172/1174, and LDN 1177 clouds. A numb er of young stellar objects (YSOs) are also found to be located toward these clouds. Various star formation studies indicate ongoing low-mass star formation inside this region. Sources associated with less near-infrared (IR) excess and less H-alpha emission raise the possibility that more low-mass YSOs, which were not identified in previous studies, are present in this region. The aim is to conduct a search for additional young sources that are kinematically associated with the known YSOs and to characterize their properties. Based on the Gaia DR2 distances and proper motions, we found that BD+68 1118, HD 200775, and PV Cep are spatially and kinematically associated with known YSOs. Using the Gaia DR2 data, we identified 39 co-moving sources around BD+68 1118. These sources are characterized using optical and near-IR color-color and color-magnitude diagrams. We estimated a distance of 340+/-7 pc to the whole association that contains BD+68 1118, HD 200775, and PV Cep. Based on the distance and proper motions of all the known YSOs, a total of 74 additional co-moving sources are found, of which 39 form a loose association surrounding BD+68 1118. These sources are predominantly M-type with ages of $sim$10 Myr and no or very little near-IR excess emission. The positive expansion coefficients obtained via the projected internal motions of the sources surrounding BD+68 1118 and HD 200775 show that these sources are expanding with respect to their HAeBe stars. A spatio-temporal gradient of these sources toward the center of the Cepheus Flare Shell supports the concept of star formation triggered by external impacts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا