ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differential equation of dimension $d+1$. We transform the extended equation as a minimal Ritz energy functional problem and search for its minimizer in a special class of deep neural networks. Moreover, based on the approximation property of networks, we establish estimates on the error made by the deep Ritz method. Numerical results are reported to demonstrate the effectiveness of the proposed method for solving fractional Laplacian equations up to ten dimensions.
In this paper, we provide a framework of designing the local discontinuous Galerkin scheme for integral fractional Laplacian $(-Delta)^{s}$ with $sin(0,1)$ in two dimensions. We theoretically prove and numerically verify the numerical stability and c
Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method
We propose a new method to deal with the essential boundary conditions encountered in the deep learning-based numerical solvers for partial differential equations. The trial functions representing by deep neural networks are non-interpolatory, which
In this paper, we focus on designing a well-conditioned Glarkin spectral methods for solving a two-sided fractional diffusion equations with drift, in which the fractional operators are defined neither in Riemann-Liouville nor Caputo sense, and its p
A numerical scheme is presented for approximating fractional order Poisson problems in two and three dimensions. The scheme is based on reformulating the original problem posed over $Omega$ on the extruded domain $mathcal{C}=Omegatimes[0,infty)$ foll