ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence Rate Analysis for Deep Ritz Method

98   0   0.0 ( 0 )
 نشر من قبل Yuling Jiao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) cite{wan11} for second order elliptic equations with Neumann boundary conditions. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with $mathrm{ReLU}^2$ activation functions. In addition to providing a theoretical justification of DRM, our study also shed light on how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples. Technically, we derive bounds on the approximation error of deep $mathrm{ReLU}^2$ network in $H^1$ norm and on the Rademacher complexity of the non-Lipschitz composition of gradient norm and $mathrm{ReLU}^2$ network, both of which are of independent interest.


قيم البحث

اقرأ أيضاً

180 - Yulei Liao , Pingbing Ming 2019
We propose a new method to deal with the essential boundary conditions encountered in the deep learning-based numerical solvers for partial differential equations. The trial functions representing by deep neural networks are non-interpolatory, which makes the enforcement of the essential boundary conditions a nontrivial matter. Our method resorts to Nitsches variational formulation to deal with this difficulty, which is consistent, and does not require significant extra computational costs. We prove the error estimate in the energy norm and illustrate the method on several representative problems posed in at most 100 dimension.
Using deep neural networks to solve PDEs has attracted a lot of attentions recently. However, why the deep learning method works is falling far behind its empirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) cite{Weinan2017The} for second order elliptic equations with Drichilet, Neumann and Robin boundary condition, respectively. We establish the first nonasymptotic convergence rate in $H^1$ norm for DRM using deep networks with smooth activation functions including logistic and hyperbolic tangent functions. Our results show how to set the hyper-parameter of depth and width to achieve the desired convergence rate in terms of number of training samples.
85 - Yiqi Gu , Micheal K. Ng 2021
In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differentia l equation of dimension $d+1$. We transform the extended equation as a minimal Ritz energy functional problem and search for its minimizer in a special class of deep neural networks. Moreover, based on the approximation property of networks, we establish estimates on the error made by the deep Ritz method. Numerical results are reported to demonstrate the effectiveness of the proposed method for solving fractional Laplacian equations up to ten dimensions.
In this paper, we examine the effectiveness of classic multiscale finite element method (MsFEM) (Hou and Wu, 1997; Hou et al., 1999) for mixed Dirichlet-Neumann, Robin and hemivariational inequality boundary problems. Constructing so-called boundary correctors is a common technique in existing methods to prove the convergence rate of MsFEM, while we think not reflects the essence of those problems. Instead, we focus on the first-order expansion structure. Through recently developed estimations in homogenization theory, our convergence rate is provided with milder assumptions and in neat forms.
In recent years, physical informed neural networks (PINNs) have been shown to be a powerful tool for solving PDEs empirically. However, numerical analysis of PINNs is still missing. In this paper, we prove the convergence rate to PINNs for the second order elliptic equations with Dirichlet boundary condition, by establishing the upper bounds on the number of training samples, depth and width of the deep neural networks to achieve desired accuracy. The error of PINNs is decomposed into approximation error and statistical error, where the approximation error is given in $C^2$ norm with $mathrm{ReLU}^{3}$ networks, the statistical error is estimated by Rademacher complexity. We derive the bound on the Rademacher complexity of the non-Lipschitz composition of gradient norm with $mathrm{ReLU}^{3}$ network, which is of immense independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا