ﻻ يوجد ملخص باللغة العربية
A numerical scheme is presented for approximating fractional order Poisson problems in two and three dimensions. The scheme is based on reformulating the original problem posed over $Omega$ on the extruded domain $mathcal{C}=Omegatimes[0,infty)$ following Caffarelli and Silvestre (2007). The resulting degenerate elliptic integer order PDE is then approximated using a hybrid FEM-spectral scheme. Finite elements are used in the direction parallel to the problem domain $Omega$, and an appropriate spectral method is used in the extruded direction. The spectral part of the scheme requires that we approximate the true eigenvalues of the integer order Laplacian over $Omega$. We derive an a priori error estimate which takes account of the error arising from using an approximation in place of the true eigenvalues. We further present a strategy for choosing approximations of the eigenvalues based on Weyls law and finite element discretizations of the eigenvalue problem. The system of linear algebraic equations arising from the hybrid FEM-spectral scheme is decomposed into blocks which can be solved effectively using standard iterative solvers such as multigrid and conjugate gradient. Numerical examples in two and three dimensions show that the approach is quasi-optimal in terms of complexity.
We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In par
We develop all of the components needed to construct an adaptive finite element code that can be used to approximate fractional partial differential equations, on non-trivial domains in $dgeq 1$ dimensions. Our main approach consists of taking tools
In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differentia
In this paper we discuss a hybridised method for FEM-BEM coupling. The coupling from both sides use a Nitsche type approach to couple to the trace variable. This leads to a formulation that is robust and flexible with respect to approximation spaces
We present a 3D hybrid method which combines the Finite Element Method (FEM) and the Spectral Boundary Integral method (SBIM) to model nonlinear problems in unbounded domains. The flexibility of FEM is used to model the complex, heterogeneous, and no