ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo modeling of low-energy electron-induced secondary electron emission yields in micro-architected boron nitride surfaces

79   0   0.0 ( 0 )
 نشر من قبل Hsing-Yin Chang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Surface erosion and secondary electron emission (SEE) have been identified as the most critical life-limiting factors in channel walls of Hall-effect thrusters for space propulsion. Recent wall concepts based on micro-architected surfaces have been proposed to mitigate surface erosion and SEE. The idea behind these designs is to take advantage of very-high surface-to-volume ratios to reduce SEE and ion erosion by internal trapping and redeposition. This has resulted in renewed interest to study electron-electron processes in relevant thruster wall materials. In this work, we present calculations of SEE yields in micro-porous hexagonal BN surfaces using stochastic simulations of electron-material interactions in discretized surface geometries. Our model consists of two complementary parts. First we study SEE as a function of primary electron energy and incidence angle in flat surfaces using Monte Carlo simulations of electron multi-scattering processes. The results are then used to represent the response function of discrete surface elements to individual electron rays generated using a ray-tracing Monte Carlo model. We find that micro-porous surfaces result in SEE yield reductions of over 50% in the energy range experienced in Hall thrusters. This points to the suitability of these micro-architected surface concepts to mitigate SEE-related issues in compact electric propulsion devices.



قيم البحث

اقرأ أيضاً

Secondary electron emission (SEE) from inner linings of plasma chambers in electric thrusters for space propulsion can have a disruptive effect on device performance and efficiency. SEE is typically calculated using elastic and inelastic electron sca ttering theory by way of Monte Carlo simulations of independent electron trajectories. However, in practice the method can only be applied for ideally smooth surfaces and thin films, not representative of real material surfaces. Recently, micro-architected surfaces with nanometric features have been proposed to mitigate SEE and ion-induced erosion in plasma-exposed thruster linings. In this paper, we propose an approach for calculating secondary electron yields from surfaces with arbitrarily-complex geometries using an extension of the emph{ray tracing} Monte Carlo (RTMC) technique. We study nanofoam structures with varying porosities as representative micro-architected surfaces, and use RTMC to generate primary electron trajectories and track secondary electrons until their escape from the outer surface. Actual surfaces are represented as a discrete finite element meshes obtained from X-ray tomography images of tungsten nanofoams. At the local level, primary rays impinging into surface elements produce daughter rays of secondary electrons whose number, energies and angular characteristics are set by pre-calculated tables of SEE yields and energies from ideally-flat surfaces. We find that these micro-architected geometries can reduce SEE by up to 50% with respect to flat surfaces depending on porosity and primary electron energy.
We present calculations of secondary electron emission (SEE) yields in tungsten as a function of primary electron energies between 50 eV and 1 keV and incidence angles between 0 and 90{deg}. We conduct a review of the established Monte Carlo methods to simulate multiple electron scattering in solids and select the best suited to study SEE in high-Z metals. We generate secondary electron yield and emission energy functions of the incident energy and angle and fit them to bivariate fitting functions using symbolic regression. We compare the numerical results with experimental data, with good agreement found. Our calculations are the first step towards studying SEE in nanoarchitected surfaces for electric propulsion chamber walls.
132 - M. Belhaj , J. Roupie 2013
The behaviour of electron emission under electron impact at very low energy is of great importance in many applications such as high energy physics, satellites, nuclear reactors, etc. However the question of the total electron reflectivity is still i n discussion. Our experimental and theoretical studies show that the total reflectivity at very low energy is far from being an obvious fact. Moreover, our results show that the yield is close to zero and not equal to one for low energy incident electron.
Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the refl ectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.
Graphene/hexagonal boron nitride (G/$h$-BN) heterostructures offer an excellent platform for developing nanoelectronic devices and for exploring correlated states in graphene under modulation by a periodic superlattice potential. Here, we report on t ransport measurements of nearly $0^{circ}$-twisted G/$h$-BN heterostructures. The heterostructures investigated are prepared by dry transfer and thermally annealing processes and are in the low mobility regime (approximately $3000~mathrm{cm}^{2}mathrm{V}^{-1}mathrm{s}^{-1}$ at 1.9 K). The replica Dirac spectra and Hofstadter butterfly spectra are observed on the hole transport side, but not on the electron transport side, of the heterostructures. We associate the observed electron-hole asymmetry to the presences of a large difference between the opened gaps in the conduction and valence bands and a strong enhancement in the interband contribution to the conductivity on the electron transport side in the low-mobility G/$h$-BN heterostructures. We also show that the gaps opened at the central Dirac point and the hole-branch secondary Dirac point are large, suggesting the presence of strong graphene-substrate interaction and electron-electron interaction in our G/$h$-BN heterostructures. Our results provide additional helpful insight into the transport mechanism in G/$h$-BN heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا