ﻻ يوجد ملخص باللغة العربية
Classical electrodynamics uses a dielectric constant to describe the polarization response of electromechanical systems to changes in an electric field. We generalize that description to include a wide variety of responses to changes in the electric field, as found in most systems and applications. Electromechanical systems can be found in many physical and biological applications, such as ion transport in membranes, batteries, and dielectric elastomers. We present a unified, thermodynamically consistent, variational framework for modeling electromechanical systems as they respond to changes in the electric field; that is to say, as they polarize. This framework is motivated and developed using the classical energetic variational approach (EnVarA). The coupling between the electric part and the chemo-mechanical parts of the system is described either by Lagrange multipliers or various energy relaxations. The classical polarization and its dielectrics and dielectric constants appear as outputs of this analysis. The Maxwell equations then become universal conservation laws of charge and current, conjoined to an electromechanical description of polarization. Polarization describes the entire electromechanical response to changes in the electric field and can sometimes be approximated as a dielectric constant or dielectric dispersion.
We demonstrate the accurate calculation of entropies and free energies for a variety of liquid metals using an extension of the two phase thermodynamic (2PT) model based on a decomposition of the velocity autocorrelation function into gas-like (hard
Active matter represents a broad class of systems that evolve far from equilibrium due to the local injection of energy. Like their passive analogues, transformations between distinct metastable states in active matter proceed through rare fluctuatio
These notes are based on lectures given during the Summer School `Active matter and non-equilibrium statistical physics, held in Les Houches in September 2018. In these notes, we have merged our lectures into a single chapter broadly dedicated to `No
The entropy change of a (non-equilibrium) Markovian ensemble is calculated from (1) the ensemble phase density $p(t)$ evolved as iterative map, $p(t) = mathbb{M}(t) p(t- Delta t)$ under detail balanced transition matrix $mathbb{M}(t)$, and (2) the in
In this paper, we proved that by choosing the proper variational function and variables, the variational approach proposed by M. Doi in soft matter physics was equivalent to the Conservation-Dissipation Formalism. To illustrate the correspondence bet