ﻻ يوجد ملخص باللغة العربية
Active matter represents a broad class of systems that evolve far from equilibrium due to the local injection of energy. Like their passive analogues, transformations between distinct metastable states in active matter proceed through rare fluctuations, however their detailed balance violating dynamics renders these events difficult to study. Here, we present a simulation method for evaluating the rate and mechanism of rare events in generic nonequilibrium systems and apply it to study the conformational changes of a passive solute in an active fluid. The method employs a variational optimization of a control force that renders the rare event a typical one, supplying an exact estimate of its rate as a ratio of path partition functions. Using this method we find that increasing activity in the active bath can enhance the rate of conformational switching of the passive solute in a manner consistent with recent bounds from stochastic thermodynamics.
Collective motion is often modeled within the framework of active fluids, where the constituent active particles, when interactions with other particles are switched off, perform normal diffusion at long times. However, in biology, single-particle su
Anomalous diffusion, manifest as a nonlinear temporal evolution of the position mean square displacement, and/or non-Gaussian features of the position statistics, is prevalent in biological transport processes. Likewise, collective behavior is often
The granular Leidenfrost effect (B. Meerson et al, Phys. Rev. Lett. {bf 91}, 024301 (2003), P. Eshuis et al, Phys. Rev. Lett. {bf 95}, 258001 (2005)) is the levitation of a mass of granular matter when a wall below the grains is vibrated giving rise
We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions
A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying for