ترغب بنشر مسار تعليمي؟ اضغط هنا

Conservation-Dissipation Formalism for Soft Matter Physics: I. Equivalence with Dois Variational Approach

76   0   0.0 ( 0 )
 نشر من قبل Liu Hong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we proved that by choosing the proper variational function and variables, the variational approach proposed by M. Doi in soft matter physics was equivalent to the Conservation-Dissipation Formalism. To illustrate the correspondence between these two theories, several novel examples in soft matter physics, including particle diffusion in dilute solutions, polymer phase separation dynamics and nematic liquid crystal flows, were carefully examined. Based on our work, a deep connection among the generalized Gibbs relation, the second law of thermodynamics and the variational principle in non-equilibrium thermodynamics was revealed.

قيم البحث

اقرأ أيضاً

92 - Liangrong Peng , Yucheng Hu , 2019
To most existing non-equilibrium theories, the modeling of non-isothermal processes was a hard task. Intrinsic difficulties involved the non-equilibrium temperature, the coexistence of conserved energy and dissipative entropy, etc. In this paper, by taking the non-isothermal flow of nematic liquid crystals as a typical example, we illustrated that thermodynamically consistent models in either vectorial or tensorial forms could be constructed within the framework of Conservation-Dissipation Formalism (CDF). And the classical isothermal Ericksen-Leslie model and Qian-Sheng model were shown to be special cases of our new vectorial and tensorial models in the isothermal, incompressible and stationary limit. Most importantly, from above examples, it was learnt that mathematical modeling based on CDF could easily solve the issues relating with non-isothermal situations in a systematic way. The first and second laws of thermodynamics were satisfied simultaneously. The non-equilibrium temperature was defined self-consistently through the partial derivative of entropy function. Relaxation-type constitutive relations were constructed, which gave rise to the classical linear constitutive relations, like Newtons law and Fouriers law, in stationary limits. Therefore, CDF was expected to have a broad scope of applications in soft matter physics, especially under the complicated situations, such as non-isothermal, compressible and nanoscale systems.
We present a comprehensive study about the relationship between the way Detailed Balance is broken in non-equilibrium systems and the resulting violations of the Fluctuation-Dissipation Theorem. Starting from stochastic dynamics with both odd and eve n variables under Time-Reversal, we exploit the relation between entropy production and the breakdown of Detailed Balance to establish general constraints on the non-equilibrium steady-states (NESS), which relate the non-equilibrium character of the dynamics with symmetry properties of the NESS distribution. This provides a direct route to derive extended Fluctuation-Dissipation Relations, expressing the linear response function in terms of NESS correlations. Such framework provides a unified way to understand the departure from equilibrium of active systems and its linear response. We then consider two paradigmatic models of interacting self-propelled particles, namely Active Brownian Particles (ABP) and Active Ornstein-Uhlenbeck Particles (AOUP). We analyze the non-equilibrium character of these systems (also within a Markov and a Chapman-Enskog approximation) and derive extended Fluctuation-Dissipation Relations for them, clarifying which features of these active model systems are genuinely non-equilibrium.
We relate the breakdown of equations of states for the mechanical pressure of generic dry active systems to the lack of momentum conservation in such systems. We show how sources and sinks of momentum arise generically close to confining walls. These typically depend on the interactions of the container with the particles, which makes the mechanical pressure a container-dependent quantity. We show that an equation of state is recovered if the dynamics of the orientation of active particles are decoupled from other degrees of freedom and lead to an apolar bulk steady-state. This is related to the fact that the mean steady-state active force density is the divergence of the flux of active impulse, an observable which measures the mean momentum particles will receive from the substrate in the future.
We have investigated the validity of the fluctuation-dissipation theorem (FDT) and the applicability of the concept of effective temperature in a number of non-equilibrium soft glassy materials. Using a combination of passive and active microrheology to measure displacement fluctuations and the mechanical response function of probe particles embedded in the materials, we have directly tested the validity of the FDT. Our results show no violation of the FDT over several decades in frequency (1-10$^4$ Hz) for hard sphere colloidal glasses and colloidal glasses and gels of Laponite. We further extended the bandwidth of our measurements to lower frequencies (down to 0.1 Hz) using video microscopy to measure the displacement fluctuations, again without finding any deviations from the FDT.
71 - Liangrong Peng , Liu Hong 2021
The main purpose of this review is to summarize the recent advances of the Conservation-Dissipation Formalism (CDF), a new way for constructing both thermodynamically compatible and mathematically stable and well-posed models for irreversible process es. The contents include but are not restricted to the CDFs physical motivations, mathematical foundations, formulations of several classical models in mathematical physics from master equations and Fokker-Planck equations to Boltzmann equations and quasi-linear Maxwell equations, as well as novel applications in the fields of non-Fourier heat conduction, non-Newtonian viscoelastic fluids, wave propagation/transportation in geophysics and neural science, soft matter physics, textit{etc.} Connections with other popular theories in the field of non-equilibrium thermodynamics are examined too.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا