ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-term, Short-term and Sudden Event: Trading Volume Movement Prediction with Graph-based Multi-view Modeling

84   0   0.0 ( 0 )
 نشر من قبل Liang Zhao
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Trading volume movement prediction is the key in a variety of financial applications. Despite its importance, there is few research on this topic because of its requirement for comprehensive understanding of information from different sources. For instance, the relation between multiple stocks, recent transaction data and suddenly released events are all essential for understanding trading market. However, most of the previous methods only take the fluctuation information of the past few weeks into consideration, thus yielding poor performance. To handle this issue, we propose a graphbased approach that can incorporate multi-view information, i.e., long-term stock trend, short-term fluctuation and sudden events information jointly into a temporal heterogeneous graph. Besides, our method is equipped with deep canonical analysis to highlight the correlations between different perspectives of fluctuation for better prediction. Experiment results show that our method outperforms strong baselines by a large margin.

قيم البحث

اقرأ أيضاً

134 - Linmei Hu , Chen Li , Chuan Shi 2019
With the information explosion of news articles, personalized news recommendation has become important for users to quickly find news that they are interested in. Existing methods on news recommendation mainly include collaborative filtering methods which rely on direct user-item interactions and content based methods which characterize the content of user reading history. Although these methods have achieved good performances, they still suffer from data sparse problem, since most of them fail to extensively exploit high-order structure information (similar users tend to read similar news articles) in news recommendation systems. In this paper, we propose to build a heterogeneous graph to explicitly model the interactions among users, news and latent topics. The incorporated topic information would help indicate a users interest and alleviate the sparsity of user-item interactions. Then we take advantage of graph neural networks to learn user and news representations that encode high-order structure information by propagating embeddings over the graph. The learned user embeddings with complete historic user clicks capture the users long-term interests. We also consider a users short-term interest using the recent reading history with an attention based LSTM model. Experimental results on real-world datasets show that our proposed model significantly outperforms state-of-the-art methods on news recommendation.
Being able to predict the occurrence of extreme returns is important in financial risk management. Using the distribution of recurrence intervals---the waiting time between consecutive extremes---we show that these extreme returns are predictable on the short term. Examining a range of different types of returns and thresholds we find that recurrence intervals follow a $q$-exponential distribution, which we then use to theoretically derive the hazard probability $W(Delta t |t)$. Maximizing the usefulness of extreme forecasts to define an optimized hazard threshold, we indicates a financial extreme occurring within the next day when the hazard probability is greater than the optimized threshold. Both in-sample tests and out-of-sample predictions indicate that these forecasts are more accurate than a benchmark that ignores the predictive signals. This recurrence interval finding deepens our understanding of reoccurring extreme returns and can be applied to forecast extremes in risk management.
The paper presents the comparative study of the nature of stock markets in short-term and long-term time scales with and without structural break in the stock data. Structural break point has been identified by applying Zivot and Andrews structural t rend break model to break the original time series (TSO) into time series before structural break (TSB) and time series after structural break (TSA). The empirical mode decomposition based Hurst exponent and variance techniques have been applied to the TSO, TSB and TSA to identify the time scales in short-term and long-term from the decomposed intrinsic mode functions. We found that for TSO, TSB and TSA the short-term time scales and long-term time scales are within the range of few days to 3 months and greater than 5 months respectively, which indicates that the short-term and long-term time scales are present in the stock market. The Hurst exponent is $sim 0.5$ and $geq 0.75$ for TSO, TSB and TSA in short-term and long-term respectively, which indicates that the market is random in short-term and strongly correlated in long-term. The identification of time scales at short-term and long-term investment horizon will be useful for investors to design investment and trading strategies.
428 - Taisei Kaizoji 2013
In this study, we investigate the statistical properties of the returns and the trading volume. We show a typical example of power-law distributions of the return and of the trading volume. Next, we propose an interacting agent model of stock markets inspired from statistical mechanics [24] to explore the empirical findings. We show that as the interaction among the interacting traders strengthens both the returns and the trading volume present power-law behavior.
Stock price movement prediction is commonly accepted as a very challenging task due to the volatile nature of financial markets. Previous works typically predict the stock price mainly based on its own information, neglecting the cross effect among i nvolved stocks. However, it is well known that an individual stock price is correlated with prices of other stocks in complex ways. To take the cross effect into consideration, we propose a deep learning framework, called Multi-GCGRU, which comprises graph convolutional network (GCN) and gated recurrent unit (GRU) to predict stock movement. Specifically, we first encode multiple relationships among stocks into graphs based on financial domain knowledge and utilize GCN to extract the cross effect based on these pre-defined graphs. To further get rid of prior knowledge, we explore an adaptive relationship learned by data automatically. The cross-correlation features produced by GCN are concatenated with historical records and then fed into GRU to model the temporal dependency of stock prices. Experiments on two stock indexes in China market show that our model outperforms other baselines. Note that our model is rather feasible to incorporate more effective stock relationships containing expert knowledge, as well as learn data-driven relationship.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا