ﻻ يوجد ملخص باللغة العربية
The paper presents the comparative study of the nature of stock markets in short-term and long-term time scales with and without structural break in the stock data. Structural break point has been identified by applying Zivot and Andrews structural trend break model to break the original time series (TSO) into time series before structural break (TSB) and time series after structural break (TSA). The empirical mode decomposition based Hurst exponent and variance techniques have been applied to the TSO, TSB and TSA to identify the time scales in short-term and long-term from the decomposed intrinsic mode functions. We found that for TSO, TSB and TSA the short-term time scales and long-term time scales are within the range of few days to 3 months and greater than 5 months respectively, which indicates that the short-term and long-term time scales are present in the stock market. The Hurst exponent is $sim 0.5$ and $geq 0.75$ for TSO, TSB and TSA in short-term and long-term respectively, which indicates that the market is random in short-term and strongly correlated in long-term. The identification of time scales at short-term and long-term investment horizon will be useful for investors to design investment and trading strategies.
Different investment strategies are adopted in short-term and long-term depending on the time scales, even though time scales are adhoc in nature. Empirical mode decomposition based Hurst exponent analysis and variance technique have been applied to
We use rank correlations as distance functions to establish the interconnectivity between stock returns, building weighted signed networks for the stocks of seven European countries, the US and Japan. We establish the theoretical relationship between
Trading volume movement prediction is the key in a variety of financial applications. Despite its importance, there is few research on this topic because of its requirement for comprehensive understanding of information from different sources. For in
In this study, we attempted to determine how eigenvalues change, according to random matrix theory (RMT), in stock market data as the number of stocks comprising the correlation matrix changes. Specifically, we tested for changes in the eigenvalue pr
The distribution of recurrence times or return intervals between extreme events is important to characterize and understand the behavior of physical systems and phenomena in many disciplines. It is well known that many physical processes in nature an