ﻻ يوجد ملخص باللغة العربية
Transitions between different charge density wave (CDW) states in quasi-two-dimensional materials may be accompanied also by changes in the inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the out-of-plane stacking order dynamics in the quasi-two-dimensional dichalcogenide 1T-TaS$_2$ is investigated for the first time. From the intensity of the CDW satellites aligned around the commensurate $l$ = 1/6 characteristic stacking order, it is found out that this phase disappears with a 0.5 ps time constant. Simultaneously, in the same experiment, the emergence of the incommensurate phase, with a slightly slower 2.0 ps time constant, is determined from the intensity of the CDW satellites aligned around the incommensurate $l$ = 1/3 characteristic stacking order. These results might be of relevance in understanding the metallic character of the laser-induced metastable hidden state recently discovered in this compound.
We investigate, using a first-principles density-functional methodology, the nature of magnetism in monolayer $1T$-phase of tantalum disulfide ($1T$-TaS$_2$ ). Magnetism in the insulating phase of TaS$_2$ is a longstanding puzzle and has led to a var
New theoretical proposals and experimental findings on transition metal dichalcogenide 1T-TaS$_2$ have revived interests in its possible Mott insulating state. We perform a comprehensive scanning tunneling microscopy and spectroscopy experiment on di
Strongly correlated systems exhibit intriguing properties caused by intertwined microscopic in- teractions that are hard to disentangle in equilibrium. Employing non-equilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional tr
The ability to tune material properties using gate electric field is at the heart of modern electronic technology. It is also a driving force behind recent advances in two-dimensional systems, such as gate-electric-field induced superconductivity and
It has been technically challenging to concurrently probe the electrons and the lattices in materials during non-equilibrium processes, allowing their correlations to be determined. Here, in a single set of ultrafast electron diffraction patterns tak