ﻻ يوجد ملخص باللغة العربية
The goal of this article is to provide a bridge between the gamma element method for the Baum--Connes conjecture (the Dirac dual-Dirac method) and the controlled algebraic approach of Roe and Yu (localization algebras). For any second countable, locally compact group G, we study the reduced crossed product algebras of the representable localization algebras for proper G-spaces. We show that the naturally defined forget-control map is equivalent to the Baum--Connes assembly map for any locally compact group G and for any coefficient G-C*-algebra B. We describe the gamma element method for the Baum--Connes conjecture from this controlled algebraic perspective. As an application, we extend the recent new proof of the Baum--Connes conjecture with coefficients for CAT(0)-cubical groups to the non-cocompact setting.
$HC_*(A rtimes G)$ is the cyclic homology of the crossed product algebra $A rtimes G.$ For any $g epsilon G$ we will define a homomorphism from $HC_*^g(A),$ the twisted cylic homology of $A$ with respect to $g,$ to $HC_*(A rtimes G).$ If $G$ is the f
Let $X$ be a compact Hausdorff space, let $Gamma$ be a discrete group that acts continuously on $X$ from the right, define $widetilde{X} = {(x,gamma) in X times Gamma : xcdotgamma= x}$, and let $Gamma$ act on $widetilde{X}$ via the formula $(x,gamma)
We obtain a mixed complex simpler than the canonical one the computes the type cyclic homologies of a crossed product with invertible cocycle $Atimes_{rho}^f H$, of a weak module algebra $A$ by a weak Hopf algebra $H$. This complex is provided with a
We revisit the characterisation of modules over non-unital $C^*$-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutati
We study the periodic cyclic homology groups of the cross-product of a finite type algebra $A$ by a discrete group $Gamma$. In case $A$ is commutative and $Gamma$ is finite, our results are complete and given in terms of the singular cohomology of th