ﻻ يوجد ملخص باللغة العربية
We revisit the characterisation of modules over non-unital $C^*$-algebras analogous to modules of sections of vector bundles. A fullness condition on the associated multiplier module characterises a class of modules which closely mirror the commutative case. We also investigate the multiplier-module construction in the context of bi-Hilbertian bimodules, particularly those of finite numerical index and finite Watatani index.
We prove a Caratheodory-Fejer type interpolation theorem for certain matrix convex sets in $C^d$ using the Blecher-Ruan-Sinclair characterization of abstract operator algebras. Our results generalize the work of Dmitry S. Kalyuzhnyi-Verbovetzkii for the d-dimensional non-commutative polydisc.
Given a graded module over a commutative ring, we define a dg-Lie algebra whose Maurer-Cartan elements are the strictly unital A-infinity algebra structures on that module. We use this to generalize Positselskis result that a curvature term on the ba
We consider a family of dynamical systems (A,alpha,L) in which alpha is an endomorphism of a C*-algebra A and L is a transfer operator for alpha. We extend Exels construction of a crossed product to cover non-unital algebras A, and show that the C*-a
Boolean, free and monotone cumulants as well as relations among them, have proven to be important in the study of non-commutative probability theory. Quite notably, Boolean cumulants were successfully used to study free infinite divisibility via the
We discuss a version of the Chevalley--Eilenberg cohomology in characteristic $2$, where the alternating cochains are replaced by symmetric ones.