ترغب بنشر مسار تعليمي؟ اضغط هنا

The periodic cyclic homology of crossed products of finite type algebras

223   0   0.0 ( 0 )
 نشر من قبل Jacek Brodzki
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the periodic cyclic homology groups of the cross-product of a finite type algebra $A$ by a discrete group $Gamma$. In case $A$ is commutative and $Gamma$ is finite, our results are complete and given in terms of the singular cohomology of the strata of fixed points. These groups identify our cyclic homology groups with the dlp orbifold cohomologydrp of the underlying (algebraic) orbifold. The proof is based on a careful study of localization at fixed points and of the resulting Koszul complexes. We provide examples of Azumaya algebras for which this identification is, however, no longer valid. As an example, we discuss some affine Weyl groups.



قيم البحث

اقرأ أيضاً

349 - Jack M. Shapiro 2014
$HC_*(A rtimes G)$ is the cyclic homology of the crossed product algebra $A rtimes G.$ For any $g epsilon G$ we will define a homomorphism from $HC_*^g(A),$ the twisted cylic homology of $A$ with respect to $g,$ to $HC_*(A rtimes G).$ If $G$ is the f inite cyclic group generated by $g$ and $|G|=r$ is invertible in $k,$ then $HC_*(A rtimes G)$ will be isomorphic to a direct sum of $r$ copies of $HC_*^g(A).$ For the case where $|G|$ is finite and $Q subset k$ we will generalize the Karoubi and Connes periodicity exact sequences for $HC_*^g(A)$ to Karoubi and Connes periodicity exact sequences for $HC_*(A rtimes G)$ .
Relying of properties of the inductive tensor product, we construct cyclic type homology theories for certain nuclear algebras. In this context we establish continuity theorems. We compute the periodic cyclic homology of the Schwartz algebra of p-adi c GL(n) in terms of compactly supported de Rham cohomology of the tempered dual of GL(n).
We obtain a mixed complex simpler than the canonical one the computes the type cyclic homologies of a crossed product with invertible cocycle $Atimes_{rho}^f H$, of a weak module algebra $A$ by a weak Hopf algebra $H$. This complex is provided with a filtration. The spectral sequence of this filtration generalizes the spectral sequence obtained in cite{CGG}. When $f$ takes its values in a separable subalgebra of $A$ that satisfies suitable conditions, the above mentioned mixed complex is provided with another filtration, whose spectral sequence generalize the Feigin-Tsygan spectral sequence.
We obtain a mixed complex simpler than the canonical one the computes the type cyclic homologies of a crossed product with invertible cocycle $Atimes_{rho}^f H$, of a weak module algebra $A$ by a weak Hopf algebra $H$ whose unit cocommutes. This comp lex is provided with a filtration. The spectral sequence of this filtration generalizes the spectral sequence obtained in cite{CGG}. When $f$ takes its values in a separable subalgebra of $A$ that satisfies suitable conditions, the above mentioned mixed complex is provided with another filtration, whose spectral sequence generalize the Feigin-Tsygan spectral sequence.
Let k be a commutative algebra with the field of the rational numbers included in k and let (E,p,i) be a cleft extension of A. We obtain a new mixed complex, simpler than the canonical one, giving the Hochschild and cyclic homologies of E relative to ker(p). This complex resembles the canonical reduced mixed complex of an augmented algebra. We begin the study of our complex showing that it has a harmonic decomposition like to the one considered by Cuntz and Quillen for the normalized mixed complex of an algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا