ﻻ يوجد ملخص باللغة العربية
In crystalline materials, the creation and modulation of dislocations are often associated with plastic deformation and energy dissipation. Here we report a study on the energy dissipation of a trilayer graphene ribbon resonator. The vibration of the ribbon generates cyclic mechanical loading to the graphene ribbon, during which mechanical energy is dissipated as heat. Measuring the quality factor of the graphene resonator provides a way to evaluate the energy dissipation. The graphene ribbon is integrated with silicon micro actuators, allowing its in-plane tension to be finely tuned. As we gradually increased the tension, we observed, in addition to the well-known resonance frequency increase, a large change in the energy dissipation. We propose that the dominating energy dissipation mechanism shifts over three regions. With small applied tension, the graphene is in elastic region, and the major energy dissipation is through graphene edge folding; as the tension increases, dislocations start to develop in the sample to gradually dominate the energy dissipation; finally, at large enough tension, graphene layers become decoupled and start to slide and cause friction, which induces the more severe energy dissipation. The generation and modulation of dislocations are modeled by molecular dynamics calculation and a method to count the energy loss is proposed and compared to the experiment.
The stacking order degree of freedom in trilayer graphene plays a critical role in determining the existence of an electric field tunable band gap. We present spatially-resolved tunneling spectroscopy measurements of dual gated Bernal (ABA) and rhomb
Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulator
We introduce twisted trilayer graphene (tTLG) with two independent twist angles as an ideal system for the precise tuning of the electronic interlayer coupling to maximize the effect of correlated behaviors. As established by experiment and theory in
Understanding and tuning correlated states is of great interest and significance to modern condensed matter physics. The recent discovery of unconventional superconductivity and Mott-like insulating states in magic-angle twisted bilayer graphene (tBL
In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacki