ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Spectroscopy of the Electrically Tunable Band Gap in Trilayer Graphene

148   0   0.0 ( 0 )
 نشر من قبل Brian LeRoy
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stacking order degree of freedom in trilayer graphene plays a critical role in determining the existence of an electric field tunable band gap. We present spatially-resolved tunneling spectroscopy measurements of dual gated Bernal (ABA) and rhombohedral (ABC) stacked trilayer graphene devices. We demonstrate that while ABA trilayer graphene remains metallic, ABC trilayer graphene exhibits a widely tunable band gap as a function of electric field. However, we find that charged impurities in the underlying substrate cause substantial spatial fluctuation of the gap size. Our work elucidates the microscopic behavior of trilayer graphene and its consequences for macroscopic devices.

قيم البحث

اقرأ أيضاً

350 - W. Bao , L. Jing , Y. Lee 2011
In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacki ng orders. At the Dirac point, ABA-stacked TLG remains metallic while the ABC counterpart becomes insulating. The latter exhibits a gap-like dI/dV characteristics at low temperature and thermally activated conduction at higher temperatures, indicating an intrinsic gap ~6 meV. In magnetic fields, in addition to an insulating state at filling factor { u}=0, ABC TLG exhibits quantum Hall plateaus at { u}=-30, pm 18, pm 9, each of which splits into 3 branches at higher fields. Such splittings are signatures of the Lifshitz transition induced by trigonal warping, found only in ABC TLG, and in semi-quantitative agreement with theory. Our results underscore the rich interaction-induced phenomena in trilayer graphene with different stacking orders, and its potential towards electronic applications.
Few layer graphene systems such as Bernal stacked bilayer and rhombohedral (ABC-) stacked trilayer offer the unique possibility to open an electric field tunable energy gap. To date, this energy gap has been experimentally confirmed in optical spectr oscopy. Here we report the first direct observation of the electric field tunable energy gap in electronic transport experiments on doubly gated suspended ABC-trilayer graphene. From a systematic study of the non-linearities in current textit{versus} voltage characteristics and the temperature dependence of the conductivity we demonstrate that thermally activated transport over the energy-gap dominates the electrical response of these transistors. The estimated values for energy gap from the temperature dependence and from the current voltage characteristics follow the theoretically expected electric field dependence with critical exponent $3/2$. These experiments indicate that high quality few-layer graphene are suitable candidates for exploring novel tunable THz light sources and detectors.
In crystalline materials, the creation and modulation of dislocations are often associated with plastic deformation and energy dissipation. Here we report a study on the energy dissipation of a trilayer graphene ribbon resonator. The vibration of the ribbon generates cyclic mechanical loading to the graphene ribbon, during which mechanical energy is dissipated as heat. Measuring the quality factor of the graphene resonator provides a way to evaluate the energy dissipation. The graphene ribbon is integrated with silicon micro actuators, allowing its in-plane tension to be finely tuned. As we gradually increased the tension, we observed, in addition to the well-known resonance frequency increase, a large change in the energy dissipation. We propose that the dominating energy dissipation mechanism shifts over three regions. With small applied tension, the graphene is in elastic region, and the major energy dissipation is through graphene edge folding; as the tension increases, dislocations start to develop in the sample to gradually dominate the energy dissipation; finally, at large enough tension, graphene layers become decoupled and start to slide and cause friction, which induces the more severe energy dissipation. The generation and modulation of dislocations are modeled by molecular dynamics calculation and a method to count the energy loss is proposed and compared to the experiment.
Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent properties by exploiting the resulting geometric moir{e} superlattice. Such superlattices are known to host bulk valley currents at tiny angles ($alp haapprox 0.3 ^circ$) and flat bands at magic angles ($alpha approx 1^circ$). We show that tuning the twist angle to $alpha^*approx 0.8^circ$ generates flat bands away from charge neutrality with a triangular superlattice periodicity. When doped with $pm 6$ electrons per moire cell, these bands are half-filled and electronic interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose a solid-state platform that realizes electrically tunable strong correlations.
Studies on two-dimensional electron systems in a strong magnetic field first revealed the quantum Hall (QH) effect, a topological state of matter featuring a finite Chern number (C) and chiral edge states. Haldane later theorized that Chern insulator s with integer QH effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (TLG/hBN) moire superlattice provides an attractive platform to explore Chern insulators because it features nearly flat moire minibands with a valley-dependent electrically tunable Chern number. Here we report the experimental observation of a correlated Chern insulator in a TLG/hBN moire superlattice. We show that reversing the direction of the applied vertical electric field switches TLG/hBNs moire minibands between zero and finite Chern numbers, as revealed by dramatic changes in magneto-transport behavior. For topological hole minibands tuned to have a finite Chern number, we focus on 1/4 filling, corresponding to one hole per moire unit cell. The Hall resistance is well quantized at h/2e2, i.e. C = 2, for |B| > 0.4 T. The correlated Chern insulator is ferromagnetic, exhibiting significant magnetic hysteresis and a large anomalous Hall signal at zero magnetic field. Our discovery of a C = 2 Chern insulator at zero magnetic field should open up exciting opportunities for discovering novel correlated topological states, possibly with novel topological excitations, in nearly flat and topologically nontrivial moire minibands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا