ﻻ يوجد ملخص باللغة العربية
When recurrent neural network transducers (RNNTs) are trained using the typical maximum likelihood criterion, the prediction network is trained only on ground truth label sequences. This leads to a mismatch during inference, known as exposure bias, when the model must deal with label sequences containing errors. In this paper we investigate approaches to reducing exposure bias in training to improve the generalization of RNNT models for automatic speech recognition (ASR). A label-preserving input perturbation to the prediction network is introduced. The input token sequences are perturbed using SwitchOut and scheduled sampling based on an additional token language model. Experiments conducted on the 300-hour Switchboard dataset demonstrate their effectiveness. By reducing the exposure bias, we show that we can further improve the accuracy of a high-performance RNNT ASR model and obtain state-of-the-art results on the 300-hour Switchboard dataset.
A popular strategy to train recurrent neural networks (RNNs), known as ``teacher forcing takes the ground truth as input at each time step and makes the later predictions partly conditioned on those inputs. Such training strategy impairs their abilit
There is a growing interest in the speech community in developing Recurrent Neural Network Transducer (RNN-T) models for automatic speech recognition (ASR) applications. RNN-T is trained with a loss function that does not enforce temporal alignment o
The auditory attention decoding (AAD) approach was proposed to determine the identity of the attended talker in a multi-talker scenario by analyzing electroencephalography (EEG) data. Although the linear model-based method has been widely used in AAD
Exposure bias describes the phenomenon that a language model trained under the teacher forcing schema may perform poorly at the inference stage when its predictions are conditioned on its previous predictions unseen from the training corpus. Recently
We present a new theoretical perspective of data noising in recurrent neural network language models (Xie et al., 2017). We show that each variant of data noising is an instance of Bayesian recurrent neural networks with a particular variational dist