ﻻ يوجد ملخص باللغة العربية
There is a growing interest in the speech community in developing Recurrent Neural Network Transducer (RNN-T) models for automatic speech recognition (ASR) applications. RNN-T is trained with a loss function that does not enforce temporal alignment of the training transcripts and audio. As a result, RNN-T models built with uni-directional long short term memory (LSTM) encoders tend to wait for longer spans of input audio, before streaming already decoded ASR tokens. In this work, we propose a modification to the RNN-T loss function and develop Alignment Restricted RNN-T (Ar-RNN-T) models, which utilize audio-text alignment information to guide the loss computation. We compare the proposed method with existing works, such as monotonic RNN-T, on LibriSpeech and in-house datasets. We show that the Ar-RNN-T loss provides a refined control to navigate the trade-offs between the token emission delays and the Word Error Rate (WER). The Ar-RNN-T models also improve downstream applications such as the ASR End-pointing by guaranteeing token emissions within any given range of latency. Moreover, the Ar-RNN-T loss allows for bigger batch sizes and 4 times higher throughput for our LSTM model architecture, enabling faster training and convergence on GPUs.
Recurrent Neural Network Transducer (RNN-T), like most end-to-end speech recognition model architectures, has an implicit neural network language model (NNLM) and cannot easily leverage unpaired text data during training. Previous work has proposed v
When recurrent neural network transducers (RNNTs) are trained using the typical maximum likelihood criterion, the prediction network is trained only on ground truth label sequences. This leads to a mismatch during inference, known as exposure bias, w
We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same seman
The applications of recurrent neural networks in machine translation are increasing in natural language processing. Besides other languages, Bangla language contains a large amount of vocabulary. Improvement of English to Bangla machine translation w
We consider the problem of learning knowledge graph (KG) embeddings for entity alignment (EA). Current methods use the embedding models mainly focusing on triple-level learning, which lacks the ability of capturing long-term dependencies existing in