ﻻ يوجد ملخص باللغة العربية
The paper discusses multivariate self- and cross-exciting processes. We define a class of multivariate point processes via their corresponding stochastic intensity processes that are driven by stochastic jumps. Essentially, there is a jump in an intensity process whenever the corresponding point process records an event. An attribute of our modelling class is that not only a jump is recorded at each instance, but also its magnitude. This allows large jumps to influence the intensity to a larger degree than smaller jumps. We give conditions which guarantee that the process is stable, in the sense that it does not explode, and provide a detailed discussion on when the subclass of linear models is stable. Finally, we fit our model to financial time series data from the S&P 500 and Nikkei 225 indices respectively. We conclude that a nonlinear variant from our modelling class fits the data best. This supports the observation that in times of crises (high intensity) jumps tend to arrive in clusters, whereas there are typically longer times between jumps when the markets are calmer. We moreover observe more variability in jump sizes when the intensity is high, than when it is low.
We propose a new multifractional stochastic process which allows for self-exciting behavior, similar to what can be seen for example in earthquakes and other self-organizing phenomena. The process can be seen as an extension of a multifractional Brow
This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in
Recently, to account for low-frequency market dynamics, several volatility models, employing high-frequency financial data, have been developed. However, in financial markets, we often observe that financial volatility processes depend on economic st
We develop a new Monte Carlo variance reduction method to estimate the expectation of two commonly encountered path-dependent functionals: first-passage times and occupation times of sets. The method is based on a recursive approximation of the first
We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and payoff functions depending on the process at multiple future times. In the spirit of Fournie et al [13] and Davis and Johansson [9] this can improve Monte Carlo numerics f