ترغب بنشر مسار تعليمي؟ اضغط هنا

The Bismut-Elworthy-Li formula for jump-diffusions and applications to Monte Carlo pricing in finance

69   0   0.0 ( 0 )
 نشر من قبل Thomas Cass
 تاريخ النشر 2006
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and payoff functions depending on the process at multiple future times. In the spirit of Fournie et al [13] and Davis and Johansson [9] this can improve Monte Carlo numerics for stochastic volatility models with jumps. To this end one needs so-called Malliavin weights and we give explicit formulae valid in presence of jumps: (a) In a non-degenerate situation, the extended BEL formula represents possible Malliavin weights as Ito integrals with explicit integrands; (b) in a hypoelliptic setting we review work of Arnaudon and Thalmaier [1] and also find explicit weights, now involving the Malliavin covariance matrix, but still straight-forward to implement. (This is in contrast to recent work by Forster, Lutkebohmert and Teichmann where weights are constructed as anticipating Skorohod integrals.) We give some financial examples covered by (b) but note that most practical cases of poor Monte Carlo performance, Digital Cliquet contracts for instance, can be dealt with by the extended BEL formula and hence without any reliance on Malliavin calculus at all. We then discuss some of the approximations, often ignored in the literature, needed to justify the use of the Malliavin weights in the context of standard jump diffusion models. Finally, as all this is meant to improve numerics, we give some numerical results with focus on Cliquets under the Heston model with jumps.



قيم البحث

اقرأ أيضاً

We derive upper and lower bounds on the expectation of $f(mathbf{S})$ under dependence uncertainty, i.e. when the marginal distributions of the random vector $mathbf{S}=(S_1,dots,S_d)$ are known but their dependence structure is partially unknown. We solve the problem by providing improved FH bounds on the copula of $mathbf{S}$ that account for additional information. In particular, we derive bounds when the values of the copula are given on a compact subset of $[0,1]^d$, the value of a functional of the copula is prescribed or different types of information are available on the lower dimensional marginals of the copula. We then show that, in contrast to the two-dimensional case, the bounds are quasi-copulas but fail to be copulas if $d>2$. Thus, in order to translate the improved FH bounds into bounds on the expectation of $f(mathbf{S})$, we develop an alternative representation of multivariate integrals with respect to copulas that admits also quasi-copulas as integrators. By means of this representation, we provide an integral characterization of orthant orders on the set of quasi-copulas which relates the improved FH bounds to bounds on the expectation of $f(mathbf{S})$. Finally, we apply these results to compute model-free bounds on the prices of multi-asset options that take partial information on the dependence structure into account, such as correlations or market prices of other traded derivatives. The numerical results show that the additional information leads to a significant improvement of the option price bounds compared to the situation where only the marginal distributions are known.
Using Dupires notion of vertical derivative, we provide a functional (path-dependent) extension of the It^os formula of Gozzi and Russo (2006) that applies to C^{0,1}-functions of continuous weak Dirichlet processes. It is motivated and illustrated b y its applications to the hedging or superhedging problems of path-dependent options in mathematical finance, in particular in the case of model uncertainty
172 - Bruno Bouchard 2017
We extend the viscosity solution characterization proved in [5] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting: the price satisfies a semilinear re-action/diffusion type equation. Based on this, we propose two new numerical schemes inspired by the branching processes based algorithm of [8]. Our numerical experiments show that approximating the discontinu-ous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results.
Density expansions for hypoelliptic diffusions $(X^1,...,X^d)$ are revisited. In particular, we are interested in density expansions of the projection $(X_T^1,...,X_T^l)$, at time $T>0$, with $l leq d$. Global conditions are found which replace the w ell-known not-in-cutlocus condition known from heat-kernel asymptotics. Our small noise expansion allows for a second order exponential factor. As application, new light is shed on the Takanobu--Watanabe expansion of Brownian motion and Levys stochastic area. Further applications include tail and implied volatility asymptotics in some stochastic volatility models, discussed in a compagnion paper.
The paper discusses multivariate self- and cross-exciting processes. We define a class of multivariate point processes via their corresponding stochastic intensity processes that are driven by stochastic jumps. Essentially, there is a jump in an inte nsity process whenever the corresponding point process records an event. An attribute of our modelling class is that not only a jump is recorded at each instance, but also its magnitude. This allows large jumps to influence the intensity to a larger degree than smaller jumps. We give conditions which guarantee that the process is stable, in the sense that it does not explode, and provide a detailed discussion on when the subclass of linear models is stable. Finally, we fit our model to financial time series data from the S&P 500 and Nikkei 225 indices respectively. We conclude that a nonlinear variant from our modelling class fits the data best. This supports the observation that in times of crises (high intensity) jumps tend to arrive in clusters, whereas there are typically longer times between jumps when the markets are calmer. We moreover observe more variability in jump sizes when the intensity is high, than when it is low.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا