ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomisation and recursion methods for mixed-exponential Levy models, with financial applications

212   0   0.0 ( 0 )
 نشر من قبل Martijn Pistorius
 تاريخ النشر 2014
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a new Monte Carlo variance reduction method to estimate the expectation of two commonly encountered path-dependent functionals: first-passage times and occupation times of sets. The method is based on a recursive approximation of the first-passage time probability and expected occupation time of sets of a Levy bridge process that relies in part on a randomisation of the time parameter. We establish this recursion for general Levy processes and derive its explicit form for mixed-exponential jump-diffusions, a dense subclass (in the sense of weak approximation) of Levy processes, which includes Brownian motion with drift, Kous double-exponential model and hyper-exponential jump-diffusion models. We present a highly accurate numerical realisation and derive error estimates. By way of illustration the method is applied to the valuation of range accruals and barrier options under exponential Levy models and Bates-type stochastic volatility models with exponential jumps. Compared with standard Monte Carlo methods, we find that the method is significantly more efficient.



قيم البحث

اقرأ أيضاً

We study by theoretical analysis and by direct numerical simulation the dynamics of a wide class of asynchronous stochastic systems composed of many autocatalytic degrees of freedom. We describe the generic emergence of truncated power laws in the si ze distribution of their individual elements. The exponents $alpha$ of these power laws are time independent and depend only on the way the elements with very small values are treated. These truncated power laws determine the collective time evolution of the system. In particular the global stochastic fluctuations of the system differ from the normal Gaussian noise according to the time and size scales at which these fluctuations are considered. We describe the ranges in which these fluctuations are parameterized respectively by: the Levy regime $alpha < 2$, the power law decay with large exponent ($alpha > 2$), and the exponential decay. Finally we relate these results to the large exponent power laws found in the actual behavior of the stock markets and to the exponential cut-off detected in certain recent measurement.
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process w ith a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose Levy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.
The paper discusses multivariate self- and cross-exciting processes. We define a class of multivariate point processes via their corresponding stochastic intensity processes that are driven by stochastic jumps. Essentially, there is a jump in an inte nsity process whenever the corresponding point process records an event. An attribute of our modelling class is that not only a jump is recorded at each instance, but also its magnitude. This allows large jumps to influence the intensity to a larger degree than smaller jumps. We give conditions which guarantee that the process is stable, in the sense that it does not explode, and provide a detailed discussion on when the subclass of linear models is stable. Finally, we fit our model to financial time series data from the S&P 500 and Nikkei 225 indices respectively. We conclude that a nonlinear variant from our modelling class fits the data best. This supports the observation that in times of crises (high intensity) jumps tend to arrive in clusters, whereas there are typically longer times between jumps when the markets are calmer. We moreover observe more variability in jump sizes when the intensity is high, than when it is low.
172 - Bruno Bouchard 2017
We extend the viscosity solution characterization proved in [5] for call/put American option prices to the case of a general payoff function in a multi-dimensional setting: the price satisfies a semilinear re-action/diffusion type equation. Based on this, we propose two new numerical schemes inspired by the branching processes based algorithm of [8]. Our numerical experiments show that approximating the discontinu-ous driver of the associated reaction/diffusion PDE by local polynomials is not efficient, while a simple randomization procedure provides very good results.
In a market with transaction costs, the price of a derivative can be expressed in terms of (preconsistent) price systems (after Kusuoka (1995)). In this paper, we consider a market with binomial model for stock price and discuss how to generate the p rice systems. From this, the price formula of a derivative can be reformulated as a stochastic control problem. Then the dynamic programming approach can be used to calculate the price. We also discuss optimization of expected utility using price systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا