ﻻ يوجد ملخص باللغة العربية
The well-known process algebras, such as CCS, ACP and $pi$-calculus, capture the interleaving concurrency based on bisimilarity semantics. We did some work on truly concurrent process algebras, such as CTC, APTC and $pi_{tc}$, capture the true concurrency based on truly concurrent bisimilarities, such as pomset bisimilarity, step bisimilarity, history-preserving (hp-) bisimilarity and hereditary history-preserving (hhp-) bisimilarity. Truly concurrent process algebras are generalizations of the corresponding traditional process algebras. In this book, we introduce reversibility, probabilism, and guards into truly concurrent calculus CTC.
The well-known process algebras, such as CCS, ACP and $pi$-calculus, capture the interleaving concurrency based on bisimilarity semantics. We did some work on truly concurrent process algebras, such as CTC, APTC and $pi_{tc}$, capture the true concur
The well-known process algebras, such as CCS, ACP and $pi$-calculus, capture the interleaving concurrency based on bisimilarity semantics. We did some work on truly concurrent process algebras, such as CTC, APTC and $pi_{tc}$, capture the true concur
In the following paper we present a new semantics for the well-known strategic logic ATL. It is based on adding roles to concurrent game structures, that is at every state, each agent belongs to exactly one role, and the role specifies what actions a
A notion of probabilistic lambda-calculus usually comes with a prescribed reduction strategy, typically call-by-name or call-by-value, as the calculus is non-confluent and these strategies yield different results. This is a break with one of the main
Formal reasoning about distributed algorithms (like Consensus) typically requires to analyze global states in a traditional state-based style. This is in contrast to the traditional action-based reasoning of process calculi. Nevertheless, we use doma