ترغب بنشر مسار تعليمي؟ اضغط هنا

Decomposing Probabilistic Lambda-calculi

69   0   0.0 ( 0 )
 نشر من قبل Giulio Guerrieri
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A notion of probabilistic lambda-calculus usually comes with a prescribed reduction strategy, typically call-by-name or call-by-value, as the calculus is non-confluent and these strategies yield different results. This is a break with one of the main advantages of lambda-calculus: confluence, which means results are independent from the choice of strategy. We present a probabilistic lambda-calculus where the probabilistic operator is decomposed into two syntactic constructs: a generator, which represents a probabilistic event; and a consumer, which acts on the term depending on a given event. The resulting calculus, the Probabilistic Event Lambda-Calculus, is confluent, and interprets the call-by-name and call-by-value strategies through different interpretations of the probabilistic operator into our generator and consumer constructs. We present two notions of reduction, one via fine-grained local rewrite steps, and one by generation and consumption of probabilistic events. Simple types for the calculus are essentially standard, and they convey strong normalization. We demonstrate how we can encode call-by-name and call-by-value probabilistic evaluation.



قيم البحث

اقرأ أيضاً

78 - Ranald Clouston 2017
Fitch-style modal deduction, in which modalities are eliminated by opening a subordinate proof, and introduced by shutting one, were investigated in the 1990s as a basis for lambda calculi. We show that such calculi have good computational properties for a variety of intuitionistic modal logics. Semantics are given in cartesian closed categories equipped with an adjunction of endofunctors, with the necessity modality interpreted by the right adjoint. Where this functor is an idempotent comonad, a coherence result on the semantics allows us to present a calculus for intuitionistic S4 that is simpler than others in the literature. We show the calculi can be extended `{a} la tense logic with the left adjoint of necessity, and are then complete for the categorical semantics.
91 - Ariel Mendelzon 2011
This article is devoted to the presentation of lambda_rex, an explicit substitution calculus with de Bruijn indexes and a simple notation. By being isomorphic to lambda_ex - a recent formalism with variable names -, lambda_rex accomplishes simulation of beta-reduction (Sim), preservation of beta-strong normalization (PSN) and meta-confluence (MC), among other desirable properties. Our calculus is based on a novel presentation of lambda_dB, using a swap notion that was originally devised by de Bruijn. Besides lambda_rex, two other indexed calculi isomorphic to lambda_x and lambda_xgc are presented, demonstrating the potential of our technique when applied to the design of index
We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the b ehaviours exhibited by the components of execution environments of instruction sequences. In a paper concerned with probabilistic instruction sequences, we proposed several kinds of probabilistic instructions and gave an informal explanation for each of them. The probabilistic features added to the extension of basic thread algebra with thread-service interaction make it possible to give a formal explanation in terms of non-probabilistic instructions and probabilistic services. The probabilistic features added to the extensions of basic thread algebra with strategic interleaving make it possible to cover strategies corresponding to probabilistic scheduling algorithms.
This paper investigates the usage of generating functions (GFs) encoding measures over the program variables for reasoning about discrete probabilistic programs. To that end, we define a denotational GF-transformer semantics for probabilistic while-p rograms, and show that it instantiates Kozens seminal distribution transformer semantics. We then study the effective usage of GFs for program analysis. We show that finitely expressible GFs enable checking super-invariants by means of computer algebra tools, and that they can be used to determine termination probabilities. The paper concludes by characterizing a class of -- possibly infinite-state -- programs whose semantics is a rational GF encoding a discrete phase-type distribution.
We introduce two extensions of the $lambda$-calculus with a probabilistic choice operator, $Lambda_oplus^{cbv}$ and $Lambda_oplus^{cbn}$, modeling respectively call-by-value and call-by-name probabilistic computation. We prove that both enjoys conflu ence and standardization, in an extended way: we revisit these two fundamental notions to take into account the asymptotic behaviour of terms. The common root of the two calculi is a further calculus based on Linear Logic, $Lambda_oplus^!$, which allows for a fine control of the interaction between choice and copying, and which allows us to develop a unified, modular approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا