ﻻ يوجد ملخص باللغة العربية
The well-known process algebras, such as CCS, ACP and $pi$-calculus, capture the interleaving concurrency based on bisimilarity semantics. We did some work on truly concurrent process algebras, such as CTC, APTC and $pi_{tc}$, capture the true concurrency based on truly concurrent bisimilarities, such as pomset bisimilarity, step bisimilarity, history-preserving (hp-) bisimilarity and hereditary history-preserving (hhp-) bisimilarity. Truly concurrent process algebras are generalizations of the corresponding traditional process algebras. In this book, we introduce localities into truly concurrent process algebras, based on the work on process algebra with localities.
The well-known process algebras, such as CCS, ACP and $pi$-calculus, capture the interleaving concurrency based on bisimilarity semantics. We did some work on truly concurrent process algebras, such as CTC, APTC and $pi_{tc}$, capture the true concur
The well-known process algebras, such as CCS, ACP and $pi$-calculus, capture the interleaving concurrency based on bisimilarity semantics. We did some work on truly concurrent process algebras, such as CTC, APTC and $pi_{tc}$, capture the true concur
In process algebras such as ACP (Algebra of Communicating Processes), parallel processes are considered to be interleaved in an arbitrary way. In the case of multi-threading as found in contemporary programming languages, parallel processes are actua
This paper introduces an imperative process algebra based on ACP (Algebra of Communicating Processes). Like other imperative process algebras, this process algebra deals with processes of the kind that arises from the execution of imperative programs
In standard process algebra, parallel components do not share a common state and communicate through synchronisation. The advantage of this type of communication is that it facilitates compositional reasoning. For modelling and analysing systems in w