ترغب بنشر مسار تعليمي؟ اضغط هنا

Solutions of renormalization group flow equations with full momentum dependence

81   0   0.0 ( 0 )
 نشر من قبل Wschebor Nicolas
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the power of a recently-proposed approximation scheme for the non-perturbative renormalization group that gives access to correlation functions over their full momentum range. We solve numerically the leading-order flow equations obtained within this scheme, and compute the two-point functions of the O(N) theories at criticality, in two and three dimensions. Excellent results are obtained for both universal and non-universal quantities at modest numerical cost.

قيم البحث

اقرأ أيضاً

We present in detail the implementation of the Blaizot-Mendez-Wschebor (BMW) approximation scheme of the nonperturbative renormalization group, which allows for the computation of the full momentum dependence of correlation functions. We discuss its signification and its relation with other schemes, in particular the derivative expansion. Quantitative results are presented for the testground of scalar O(N) theories. Besides critical exponents which are zero-momentum quantities, we compute in three dimensions in the whole momentum range the two-point function at criticality and, in the high temperature phase, the universal structure factor. In all cases, we find very good agreement with the best existing results.
We investigate finite lattice approximations to the Wilson Renormalization Group in models of unconstrained spins. We discuss first the properties of the Renormalization Group Transformation (RGT) that control the accuracy of this type of approximati ons and explain different methods and techniques to practically identify them. We also discuss how to determine the anomalous dimension of the field. We apply our considerations to a linear sigma model in two dimensions in the domain of attraction of the Ising Fixed Point using a Bell-Wilson RGT. We are able to identify optimal RGTs which allow accurate computations of quantities such as critical exponents, fixed point couplings and eigenvectors with modest statistics. We finally discuss the advantages and limitations of this type of approach.
90 - Uwe C. Tauber 2011
These notes provide a concise introduction to important applications of the renormalization group (RG) in statistical physics. After reviewing the scaling approach and Ginzburg-Landau theory for critical phenomena, Wilsons momentum shell RG method is presented, and the critical exponents for the scalar Phi^4 model are determined to first order in an eps expansion about d_c = 4. Subsequently, the technically more versatile field-theoretic formulation of the perturbational RG for static critical phenomena is described. It is explained how the emergence of scale invariance connects UV divergences to IR singularities, and the RG equation is employed to compute the critical exponents for the O(n)-symmetric Landau-Ginzburg-Wilson theory. The second part is devoted to field theory representations of non-linear stochastic dynamical systems, and the application of RG tools to critical dynamics. Dynamic critical phenomena in systems near equilibrium are efficiently captured through Langevin equations, and their mapping onto the Janssen-De Dominicis response functional, exemplified by the purely relaxational models with non-conserved (model A) / conserved order parameter (model B). The Langevin description and scaling exponents for isotropic ferromagnets (model J) and for driven diffusive non-equilibrium systems are also discussed. Finally, an outlook is presented to scale-invariant phenomena and non-equilibrium phase transitions in interacting particle systems. It is shown how the stochastic master equation associated with chemical reactions or population dynamics models can be mapped onto imaginary-time, non-Hermitian `quantum mechanics. In the continuum limit, this Doi-Peliti Hamiltonian is represented through a coherent-state path integral, which allows an RG analysis of diffusion-limited annihilation processes and phase transitions from active to inactive, absorbing states.
87 - H. W. Diehl , R. K. Zia 2001
It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369 (2001) violates fundamental symmetry requirements for vanishing gravitational acceleration $g$, so that its results cannot be applied to critical properties of interfaces for $gto 0$.
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimens ions. The tensor RG methods have had a great success in producing accurate free energy compared with the conventional real-space RG schemes. However, the above-mentioned canonical procedure has not been implemented for general tensor-network-based RG schemes. We extend the success of the tensor methods further to extraction of scaling dimensions through the canonical RG prescription, without explicitly using the conformal field theory. This approach is benchmarked in the context of the Ising models in 1D and 2D. Based on a pure RG argument, the proposed method has potential applications to 3D systems, where the existing bread-and-butter method is inapplicable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا