ترغب بنشر مسار تعليمي؟ اضغط هنا

$delta$-PVDF Based Flexible Nanogenerator

303   0   0.0 ( 0 )
 نشر من قبل Dipankar Mandal Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Delta ($delta$) phase comprising polyvinylidene fluoride (PVDF) nanoparticles are fabricated through electrospray technique by applying 0.1 MV/m electric field at ambient temperature and pressure, which is 10$^{3}$ times lower than the typical value, required for $delta$-phase transformation. The X-ray diffraction (XRD) and selected area electron diffraction (SAED) patterns are clearly indicating the $delta$-phase formation. The piezo- and ferro- electric response of the $delta$-PVDF nanoparticles has been demonstrated through scanning probe microscopic technique based on piezoresponse force microscopy (PFM). The vertical piezoelectric response, indicated by d$_{33}$ coefficient, is found $sim$-11 pm/V. Kink propagation model is adopted to justify the $delta$-phase conversion in electrospray system. The electrical response from $delta$-PVDF nanoparticle comprised nanogenerator under the external impacts and acoustic signal indicates that molecular ferroelectric dipoles responsible for piezoelectric responses, are poled in-situ during nanoparticle formation, thus further electrical poling is not necessary.



قيم البحث

اقرأ أيضاً

Printed electronics rely on the deposition of conductive liquid inks, typically onto polymeric or paper substrates. Among available conductive fillers for use in electronic inks, carbon nanotubes (CNTs) have high conductivity, low density, processabi lity at low temperatures, and intrinsic mechanical flexibility. However, the electrical conductivity of printed CNT structures has been limited by CNT quality and concentration, and by the need for nonconductive modifiers to make the ink stable and extrudable. This study introduces a polymer-free, printable aqueous CNT ink, and presents the relationships between printing resolution, ink rheology, and ink-substrate interactions. A model is constructed to predict printed feature sizes on impermeable substrates based on Wenzel wetting. Printed lines have conductivity up to 10,000 S/m. The lines are flexible, with < 5% change in DC resistance after 1,000 bending cycles, and <3% change in DC resistance with a bending radius down to 1 mm. Demonstrations focus on (i) conformality, via printing CNTs onto stickers that can be applied to curved surfaces, (ii) interactivity using a CNT-based button printed onto folded paper structure, and (iii) capacitive sensing of liquid wicking into the substrate itself. Facile integration of surface mount components on printed circuits is enabled by the intrinsic adhesion of the wet ink.
Highly flexible electromagnetic interference (EMI) shielding material with excellent shielding performance is of great significance to practical applications in next-generation flexible devices. However, most EMI materials suffer from insufficient fl exibility and complicated preparation methods. In this study, we propose a new scheme to fabricate a magnetic Ni particle/Ag matrix composite ultrathin film on a paper surface. For a ~2 micro meter thick film on paper, the EMI shielding effectiveness (SE) was found to be 46.2 dB at 8.1 GHz after bending 200,000 times over a radius of ~2 mm. The sheet resistance (Rsq) remained lower than 2.30 Ohm after bending 200,000 times. Contrary to the change in Rsq, the EMI SE of the film generally increased as the weight ratio of Ag to Ni increased, in accordance with the principle that EMI SE is positively related with an increase in electrical conductivity. Desirable EMI shielding ability, ultrahigh flexibility, and simple processing provide this material with excellent application prospects.
Among the several flexible thermoelectric modules in existence, sintered Bi-Te-based modules represent a viable option because of their high output power density and flexibility, which enables the use of arbitrary heat sources. We have fabricated Bi- Te-based modules with a large-scalable fabrication process and improved their output performance. The reduction in the interconnection resistance, using thick electrodes of the flexible printed circuit, significantly improves the modules output power to 87 mW/cm$^{2}$ at $Delta T$ = 70 K, which is 1.3-fold higher than a previous prototype module. Furthermore, the establishment of the fabrication for the top electrodes by using the surface mount technology makes it possible to realize a high-throughput manufacturing of the module. Our durability tests reveal that there is no significant change in the internal resistance of the module during 10000 cycles of mechanical bending test and 1000 cycles of thermal stress test.
489 - Lei Shi , Shu Wang , Tianni Lu 2019
High stability and oxygen permeability are two prominent requirements for the oxygen transport membrane candidates used as industrialization. Herein, we report several composite membranes based on xwt.%Ce0.9Pr0.1O2(CPO)-(100-x)wt.%Pr0.6Sr0.4Fe0.8Al0. 2O3(PSFAO) (x = 50, 60 and 75) prepared via a modified Pechini method. Oxygen permeability test reveals that the 60CPO-40PSFAO composition exhibits the highest oxygen permeability. The oxygen permeation flux through the optimal uncoated 0.33 mm-thickness 60CPO-40PSFAO composite can reach 1.03 mL cm-2 min-1 (over the general requirement value of 1 mL cm-2 min-1) in air/He atmosphere at 1000 {deg}C. In situ XRD performance confirms the optimal 60CPO-40PSFAO sample shows excellent stability in CO2-containing atmospheres. The 60CPO-40PSFAO membrane still exhibits simultaneously excellent oxygen permeability and phase stability after operating for over 100 h at air/CO2 condition at 1000 {deg}C, which further indicates that the 60CPO-40PSFAO composite is likely to be used for oxygen supply in CO2 capture
Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: 1) transparent graphene contacts to mitigate Fermi-level pinning, 2) $rm{MoO}_it{x}$ capping for doping, passivation and anti-reflection, and 3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of $rm{4.4 W,g^{-1}}$ for flexible TMD ($rm{WSe_2}$) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to $rm{46 W,g^{-1}}$, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا