ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbation analysis of third-order tensor eigenvalue problem based on tensor-tensor multiplication

121   0   0.0 ( 0 )
 نشر من قبل Changxin Mo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Perturbation analysis has been primarily considered to be one of the main issues in many fields and considerable progress, especially getting involved with matrices, has been made from then to now. In this paper, we pay our attention to the perturbation analysis subject on tensor eigenvalues under tensor-tensor multiplication sense; and also {epsilon}-pseudospectra theory for third-order tensors. The definition of the generalized T-eigenvalue of third-order tensors is given. Several classical results, such as the Bauer-Fike theorem and its general case, Gershgorin circle theorem and Kahan theorem, are extended from matrix to tensor case. The study on {epsilon}-pseudospectra of tensors is presented, together with various pseudospectra properties and numerical examples which show the boundaries of the {epsilon}-pseudospectra of certain tensors under different levels.

قيم البحث

اقرأ أيضاً

There is a significant expansion in both volume and range of applications along with the concomitant increase in the variety of data sources. These ever-expanding trends have highlighted the necessity for more versatile analysis tools that offer grea ter opportunities for algorithmic developments and computationally faster operations than the standard flat-view matrix approach. Tensors, or multi-way arrays, provide such an algebraic framework which is naturally suited to data of such large volume, diversity, and veracity. Indeed, the associated tensor decompositions have demonstrated their potential in breaking the Curse of Dimensionality associated with traditional matrix methods, where a necessary exponential increase in data volume leads to adverse or even intractable consequences on computational complexity. A key tool underpinning multi-linear manipulation of tensors and tensor networks is the standard Tensor Contraction Product (TCP). However, depending on the dimensionality of the underlying tensors, the TCP also comes at the price of high computational complexity in tensor manipulation. In this work, we resort to diagrammatic tensor network manipulation to calculate such products in an efficient and computationally tractable manner, by making use of Tensor Train decomposition (TTD). This has rendered the underlying concepts easy to perceive, thereby enhancing intuition of the associated underlying operations, while preserving mathematical rigour. In addition to bypassing the cumbersome mathematical multi-linear expressions, the proposed Tensor Train Contraction Product model is shown to accelerate significantly the underlying computational operations, as it is independent of tensor order and linear in the tensor dimension, as opposed to performing the full computations through the standard approach (exponential in tensor order).
207 - Jiawang Nie , Ke Ye , Lihong Zhi 2020
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of s uch decomposable tensors, which are crucial to the practical computations of such decompositions. For a given tensor, we also develop a criterion for the existence of a symmetric decomposition on $X$. Secondly and most importantly, we propose a method for computing symmetric tensor decompositions on an arbitrary $X$. As a specific application, Vandermonde decompositions for nonsymmetric tensors can be computed by the proposed algorithm.
121 - Qianxi Wu , An-Bao Xu 2021
Tensor decomposition is a popular technique for tensor completion, However most of the existing methods are based on linear or shallow model, when the data tensor becomes large and the observation data is very small, it is prone to over fitting and t he performance decreases significantly. To address this problem, the completion method for a tensor based on a Biased Deep Tensor Factorization Network (BDTFN) is proposed. This method can not only overcome the shortcomings of traditional tensor factorization, but also deal with complex non-linear data. Firstly, the horizontal and lateral tensors corresponding to the observed values of the input tensors are used as inputs and projected to obtain their horizontal (lateral) potential feature tensors. Secondly, the horizontal (lateral) potential feature tensors are respectively constructed into a multilayer perceptron network. Finally, the horizontal and lateral output tensors are fused by constructing a bilinear pooling layer. Tensor forward-propagation is composed of those three step, and its parameters are updated by tensor back-propagation using the multivariable chain rule. In this paper, we consider the large-scale 5-minute traffic speed data set and use it to address the missing data imputation problem for large-scale spatiotemporal traffic data. In addition, we compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery. Numerical experimental results illustrate that our approach is not only much more accurate than those state-of-the-art methods, but it also has high speed.
The alternating least squares algorithm for CP and Tucker decomposition is dominated in cost by the tensor contractions necessary to set up the quadratic optimization subproblems. We introduce a novel family of algorithms that uses perturbative corre ctions to the subproblems rather than recomputing the tensor contractions. This approximation is accurate when the factor matrices are changing little across iterations, which occurs when alternating least squares approaches convergence. We provide a theoretical analysis to bound the approximation error. Our numerical experiments demonstrate that the proposed pairwise perturbation algorithms are easy to control and converge to minima that are as good as alternating least squares. The experimental results show improvements of up to 3.1X with respect to state-of-the-art alternating least squares approaches for various model tensor problems and real datasets.
108 - Jiawang Nie , Zi Yang 2019
Hermitian tensors are generalizations of Hermitian matrices, but they have very different properties. Every complex Hermitian tensor is a sum of complex Hermitian rank-1 tensors. However, this is not true for the real case. We study basic properties for Hermitian tensors such as Hermitian decompositions and Hermitian ranks. For canonical basis tensors, we determine their Hermitian ranks and decompositions. For real Hermitian tensors, we give a full characterization for them to have Hermitian decompositions over the real field. In addition to traditional flattening, Hermitian tensors specially have Hermitian and Kronecker flattenings, which may give different lower bounds for Hermitian ranks. We also study other topics such as eigenvalues, positive semidefiniteness, sum of squares representations, and separability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا