ترغب بنشر مسار تعليمي؟ اضغط هنا

A Biased Deep Tensor Factorization Network For Tensor Completion

122   0   0.0 ( 0 )
 نشر من قبل An-Bao Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensor decomposition is a popular technique for tensor completion, However most of the existing methods are based on linear or shallow model, when the data tensor becomes large and the observation data is very small, it is prone to over fitting and the performance decreases significantly. To address this problem, the completion method for a tensor based on a Biased Deep Tensor Factorization Network (BDTFN) is proposed. This method can not only overcome the shortcomings of traditional tensor factorization, but also deal with complex non-linear data. Firstly, the horizontal and lateral tensors corresponding to the observed values of the input tensors are used as inputs and projected to obtain their horizontal (lateral) potential feature tensors. Secondly, the horizontal (lateral) potential feature tensors are respectively constructed into a multilayer perceptron network. Finally, the horizontal and lateral output tensors are fused by constructing a bilinear pooling layer. Tensor forward-propagation is composed of those three step, and its parameters are updated by tensor back-propagation using the multivariable chain rule. In this paper, we consider the large-scale 5-minute traffic speed data set and use it to address the missing data imputation problem for large-scale spatiotemporal traffic data. In addition, we compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery. Numerical experimental results illustrate that our approach is not only much more accurate than those state-of-the-art methods, but it also has high speed.

قيم البحث

اقرأ أيضاً

229 - Abdul Ahad , Zhen Long , Ce Zhu 2020
Tensor completion can estimate missing values of a high-order data from its partially observed entries. Recent works show that low rank tensor ring approximation is one of the most powerful tools to solve tensor completion problem. However, existing algorithms need predefined tensor ring rank which may be hard to determine in practice. To address the issue, we propose a hierarchical tensor ring decomposition for more compact representation. We use the standard tensor ring to decompose a tensor into several 3-order sub-tensors in the first layer, and each sub-tensor is further factorized by tensor singular value decomposition (t-SVD) in the second layer. In the low rank tensor completion based on the proposed decomposition, the zero elements in the 3-order core tensor are pruned in the second layer, which helps to automatically determinate the tensor ring rank. To further enhance the recovery performance, we use total variation to exploit the locally piece-wise smoothness data structure. The alternating direction method of multiplier can divide the optimization model into several subproblems, and each one can be solved efficiently. Numerical experiments on color images and hyperspectral images demonstrate that the proposed algorithm outperforms state-of-the-arts ones in terms of recovery accuracy.
105 - Yongming Zheng , An-Bao Xu 2020
In this paper, we consider the tensor completion problem, which has many researchers in the machine learning particularly concerned. Our fast and precise method is built on extending the $L_{2,1}$-norm minimization and Qatar Riyal decomposition (LNM- QR) method for matrix completions to tensor completions, and is different from the popular tensor completion methods using the tensor singular value decomposition (t-SVD). In terms of shortening the computing time, t-SVD is replaced with the method computing an approximate t-SVD based on Qatar Riyal decomposition (CTSVD-QR), which can be used to compute the largest $r left(r>0 right)$ singular values (tubes) and their associated singular vectors (of tubes) iteratively. We, in addition, use the tensor $L_{2,1}$-norm instead of the tensor nuclear norm to minimize our model on account of it is easy to optimize. Then in terms of improving accuracy, ADMM, a gradient-search-based method, plays a crucial part in our method. Numerical experimental results show that our method is faster than those state-of-the-art algorithms and have excellent accuracy.
292 - An-Bao Xu 2020
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c ompletions. The method performs a tensor factorization using the tensor singular value decomposition (t-SVD) which extends the standard matrix SVD to tensors. The t-SVD leads to a notion of rank, called tubal-rank here. We want to recreate the data in tensors from low resolution samples as best we can here. To complete a low resolution tensor successfully we assume that the given tensor data has low tubal-rank. For tensors of low tubal-rank, we establish convergence results for our method that are based on the tensor restricted isometry property (TRIP). Our result with the TRIP condition for tensors is similar to low-rank matrix completions under the RIP condition. The TRIP condition uses the t-SVD for low tubal-rank tensors, while RIP uses the SVD for matrices. We show that a subgaussian measurement map satisfies the TRIP condition with high probability and gives an almost optimal bound on the number of required measurements. We compare the numerical performance of the proposed algorithm with those for state-of-the-art approaches on video recovery and color image recovery.
141 - Chang Nie , Huan Wang , Zhihui Lai 2021
This work studies the problem of high-dimensional data (referred to tensors) completion from partially observed samplings. We consider that a tensor is a superposition of multiple low-rank components. In particular, each component can be represented as multilinear connections over several latent factors and naturally mapped to a specific tensor network (TN) topology. In this paper, we propose a fundamental tensor decomposition (TD) framework: Multi-Tensor Network Representation (MTNR), which can be regarded as a linear combination of a range of TD models, e.g., CANDECOMP/PARAFAC (CP) decomposition, Tensor Train (TT), and Tensor Ring (TR). Specifically, MTNR represents a high-order tensor as the addition of multiple TN models, and the topology of each TN is automatically generated instead of manually pre-designed. For the optimization phase, an adaptive topology learning (ATL) algorithm is presented to obtain latent factors of each TN based on a rank incremental strategy and a projection error measurement strategy. In addition, we theoretically establish the fundamental multilinear operations for the tensors with TN representation, and reveal the structural transformation of MTNR to a single TN. Finally, MTNR is applied to a typical task, tensor completion, and two effective algorithms are proposed for the exact recovery of incomplete data based on the Alternating Least Squares (ALS) scheme and Alternating Direction Method of Multiplier (ADMM) framework. Extensive numerical experiments on synthetic data and real-world datasets demonstrate the effectiveness of MTNR compared with the start-of-the-art methods.
120 - Changxin Mo , Weiyang Ding 2021
Perturbation analysis has been primarily considered to be one of the main issues in many fields and considerable progress, especially getting involved with matrices, has been made from then to now. In this paper, we pay our attention to the perturbat ion analysis subject on tensor eigenvalues under tensor-tensor multiplication sense; and also {epsilon}-pseudospectra theory for third-order tensors. The definition of the generalized T-eigenvalue of third-order tensors is given. Several classical results, such as the Bauer-Fike theorem and its general case, Gershgorin circle theorem and Kahan theorem, are extended from matrix to tensor case. The study on {epsilon}-pseudospectra of tensors is presented, together with various pseudospectra properties and numerical examples which show the boundaries of the {epsilon}-pseudospectra of certain tensors under different levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا