ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetric Tensor Decompositions On Varieties

208   0   0.0 ( 0 )
 نشر من قبل Ke Ye
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of such decomposable tensors, which are crucial to the practical computations of such decompositions. For a given tensor, we also develop a criterion for the existence of a symmetric decomposition on $X$. Secondly and most importantly, we propose a method for computing symmetric tensor decompositions on an arbitrary $X$. As a specific application, Vandermonde decompositions for nonsymmetric tensors can be computed by the proposed algorithm.



قيم البحث

اقرأ أيضاً

108 - Jiawang Nie , Zi Yang 2019
Hermitian tensors are generalizations of Hermitian matrices, but they have very different properties. Every complex Hermitian tensor is a sum of complex Hermitian rank-1 tensors. However, this is not true for the real case. We study basic properties for Hermitian tensors such as Hermitian decompositions and Hermitian ranks. For canonical basis tensors, we determine their Hermitian ranks and decompositions. For real Hermitian tensors, we give a full characterization for them to have Hermitian decompositions over the real field. In addition to traditional flattening, Hermitian tensors specially have Hermitian and Kronecker flattenings, which may give different lower bounds for Hermitian ranks. We also study other topics such as eigenvalues, positive semidefiniteness, sum of squares representations, and separability.
In this work, we consider symmetric positive definite pencils depending on two parameters. That is, we are concerned with the generalized eigenvalue problem $A(x)-lambda B(x)$, where $A$ and $B$ are symmetric matrix valued functions in ${mathbb R}^{n times n}$, smoothly depending on parameters $xin Omegasubset {mathbb R}^2$; further, $B$ is also positive definite. In general, the eigenvalues of this multiparameter problem will not be smooth, the lack of smoothness resulting from eigenvalues being equal at some parameter values (conical intersections). We first give general theoretical results on the smoothness of eigenvalues and eigenvectors for the present generalized eigenvalue problem, and hence for the corresponding projections, and then perform a numerical study of the statistical properties of coalescing eigenvalues for pencils where $A$ and $B$ are either full or banded, for several bandwidths. Our numerical study will be performed with respect to a random matrix ensemble which respects the underlying engineering problems motivating our study.
123 - Chao Zeng 2021
The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the low er semicontinuity of orthogonal rank. The lower semicontinuity guarantees the existence of low orthogonal rank approximation. To fit the orthogonal decomposition, we propose an algorithm based on the augmented Lagrangian method and guarantee the orthogonality by a novel orthogonalization procedure. Numerical experiments show that the proposed method has a great advantage over the existing methods for strongly orthogonal decompositions in terms of the approximation error.
This paper studies how to learn parameters in diagonal Gaussian mixture models. The problem can be formulated as computing incomplete symmetric tensor decompositions. We use generating polynomials to compute incomplete symmetric tensor decompositions and approximations. Then the tensor approximation method is used to learn diagonal Gaussian mixture models. We also do the stability analysis. When the first and third order moments are sufficiently accurate, we show that the obtained parameters for the Gaussian mixture models are also highly accurate. Numerical experiments are also provided.
204 - Tamara G. Kolda 2015
We consider the problem of decomposing a real-valued symmetric tensor as the sum of outer products of real-valued, pairwise orthogonal vectors. Such decompositions do not generally exist, but we show that some symmetric tensor decomposition problems can be converted to orthogonal problems following the whitening procedure proposed by Anandkumar et al. (2012). If an orthogonal decomposition of an $m$-way $n$-dimensional symmetric tensor exists, we propose a novel method to compute it that reduces to an $n times n$ symmetric matrix eigenproblem. We provide numerical results demonstrating the effectiveness of the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا