ﻻ يوجد ملخص باللغة العربية
Adversarial data examples have drawn significant attention from the machine learning and security communities. A line of work on tackling adversarial examples is certified robustness via randomized smoothing that can provide a theoretical robustness guarantee. However, such a mechanism usually uses floating-point arithmetic for calculations in inference and requires large memory footprints and daunting computational costs. These defensive models cannot run efficiently on edge devices nor be deployed on integer-only logical units such as Turing Tensor Cores or integer-only ARM processors. To overcome these challenges, we propose an integer randomized smoothing approach with quantization to convert any classifier into a new smoothed classifier, which uses integer-only arithmetic for certified robustness against adversarial perturbations. We prove a tight robustness guarantee under L2-norm for the proposed approach. We show our approach can obtain a comparable accuracy and 4x~5x speedup over floating-point arithmetic certified robust methods on general-purpose CPUs and mobile devices on two distinct datasets (CIFAR-10 and Caltech-101).
Great advancement in deep neural networks (DNNs) has led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying th
The rising popularity of intelligent mobile devices and the daunting computational cost of deep learning-based models call for efficient and accurate on-device inference schemes. We propose a quantization scheme that allows inference to be carried ou
Deployment of deep neural networks (DNNs) in safety- or security-critical systems requires provable guarantees on their correct behaviour. A common requirement is robustness to adversarial perturbations in a neighbourhood around an input. In this pap
Recent breakthroughs in the field of deep learning have led to advancements in a broad spectrum of tasks in computer vision, audio processing, natural language processing and other areas. In most instances where these tasks are deployed in real-world
Randomized smoothing has achieved state-of-the-art certified robustness against $l_2$-norm adversarial attacks. However, it is not wholly resolved on how to find the optimal base classifier for randomized smoothing. In this work, we employ a Smoothed