ﻻ يوجد ملخص باللغة العربية
Great advancement in deep neural networks (DNNs) has led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying these models to safety-critical applications such as autonomous driving. Different defense approaches have been proposed against adversarial attacks, including: 1) empirical defenses, which can be adaptively attacked again without providing robustness certification; and 2) certifiably robust approaches, which consist of robustness verification providing the lower bound of robust accuracy against any attacks under certain conditions and corresponding robust training approaches. In this paper, we focus on these certifiably robust approaches and provide the first work to perform large-scale systematic analysis of different robustness verification and training approaches. In particular, we 1) provide a taxonomy for the robustness verification and training approaches, as well as discuss the detailed methodologies for representative algorithms, 2) reveal the fundamental connections among these approaches, 3) discuss current research progresses, theoretical barriers, main challenges, and several promising future directions for certified defenses for DNNs, and 4) provide an open-sourced unified platform to evaluate 20+ representative verification and corresponding robust training approaches on a wide range of DNNs.
Adversarial data examples have drawn significant attention from the machine learning and security communities. A line of work on tackling adversarial examples is certified robustness via randomized smoothing that can provide a theoretical robustness
Recent breakthroughs in the field of deep learning have led to advancements in a broad spectrum of tasks in computer vision, audio processing, natural language processing and other areas. In most instances where these tasks are deployed in real-world
Randomized smoothing has achieved state-of-the-art certified robustness against $l_2$-norm adversarial attacks. However, it is not wholly resolved on how to find the optimal base classifier for randomized smoothing. In this work, we employ a Smoothed
Obtaining the state of the art performance of deep learning models imposes a high cost to model generators, due to the tedious data preparation and the substantial processing requirements. To protect the model from unauthorized re-distribution, water
Deployment of deep neural networks (DNNs) in safety- or security-critical systems requires provable guarantees on their correct behaviour. A common requirement is robustness to adversarial perturbations in a neighbourhood around an input. In this pap