ترغب بنشر مسار تعليمي؟ اضغط هنا

Semi-Classical Discretization and Long-Time Evolution of Variable Spin Systems

48   0   0.0 ( 0 )
 نشر من قبل Andrei Klimov B.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply the semi-classical limit of the generalized $SO(3)$ map for representation of variable-spin systems in a four-dimensional symplectic manifold and approximate their evolution terms of effective classical dynamics on $T^{ast }mathcal{S}_{2}$. Using the asymptotic form of the star-product, we manage to quantize one of the classical dynamic variables and introduce a discretized version of the Truncated Wigner Approximation (TWA). Two emblematic examples of quantum dynamics (rotor in an external field and two coupled spins) are analyzed, and the results of exact, continuous, and discretiz

قيم البحث

اقرأ أيضاً

263 - Roohollah Ghobadi 2021
Kernel methods are ubiquitous in classical machine learning, and recently their formal similarity with quantum mechanics has been established. To grasp the potential advantage of quantum machine learning, it is necessary to understand the distinction between non-classical kernel functions and classical kernels. This paper builds on a recently proposed phase space nonclassicality witness [Bohmann, Agudelo, Phys. Rev. Lett. 124, 133601 (2020)] to derive a witness for the kernels quantumness in continuous-variable systems. We discuss the role of kernels nonclassicality in data distribution in the feature space and the effect of imperfect state preparation. Furthermore, we show that the non-classical kernels lead to the quantum advantage in parameter estimation. Our work highlights the role of the phase space correlation functions in understanding the distinction between classical machine learning from quantum machine learning.
78 - Davide Carbone 2021
We extend to quantum mechanical systems results previously obtained for classical mechanical systems, concerning time reversibility in presence of a magnetic field. As in the classical case, results like the Onsager reciprocal relations are consequen tly obtained, without recourse to the Casimir modification. The quantum systems treated here are nonrelativistic, and are described by the Schr{o}dinger equation or the Pauli equation. In particular, we prove that the spin-field interaction does not break the time reversal invariance (TRI) of the dynamics, and that it does not require additional conditions for such a symmetry to hold, compared to the spinless cases.
The non-integrable Dicke model and its integrable approximation, the Tavis-Cummings (TC) model, are studied as functions of both the coupling constant and the excitation energy. The present contribution extends the analysis presented in the previous paper by focusing on the statistical properties of the quantum fluctuations in the energy spectrum and their relation with the excited state quantum phase transitions (ESQPT). These properties are compared with the dynamics observed in the semi-classica
70 - M. Turek , P. Rozmej 2004
Time evolution of radial wave packets built from the eigenstates of Dirac equation for a hydrogenic systems is considered. Radial wave packets are constructed from the states of different $n$ quantum number and the same lowest angular momentum. In ge neral they exhibit a kind of breathing motion with dispersion and (partial) revivals. Calculations show that for some particular preparations of the wave packet one can observe interesting effects in spin motion, coming from inherent entanglement of spin and orbital degrees of freedom. These effects manifest themselves through some oscillations in the mean values of spin operators and through changes of spatial probability density carried by upper and lower components of the wave function. It is also shown that the characteristic time scale of predicted effects (called $T_{mathrm{ls}}$) is for radial wave packets much smaller than in other cases, reaching values comparable to (or even less than) the time scale for the wave packet revival.
Most quantum system with short-ranged interactions show a fast decay of entanglement with the distance. In this Letter, we focus on the peculiarity of some systems to distribute entanglement between distant parties. Even in realistic models, like the spin-1 Heisenberg chain, sizable entanglement is present between arbitrarily distant particles. We show that long distance entanglement appears for values of the microscopic parameters which do not coincide with known quantum critical points, hence signaling a transition detected only by genuine quantum correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا