ﻻ يوجد ملخص باللغة العربية
Kernel methods are ubiquitous in classical machine learning, and recently their formal similarity with quantum mechanics has been established. To grasp the potential advantage of quantum machine learning, it is necessary to understand the distinction between non-classical kernel functions and classical kernels. This paper builds on a recently proposed phase space nonclassicality witness [Bohmann, Agudelo, Phys. Rev. Lett. 124, 133601 (2020)] to derive a witness for the kernels quantumness in continuous-variable systems. We discuss the role of kernels nonclassicality in data distribution in the feature space and the effect of imperfect state preparation. Furthermore, we show that the non-classical kernels lead to the quantum advantage in parameter estimation. Our work highlights the role of the phase space correlation functions in understanding the distinction between classical machine learning from quantum machine learning.
Entanglement is one of the most fascinating features arising from quantum-mechanics and of great importance for quantum information science. Of particular interest are so-called hybrid-entangled states which have the intriguing property that they con
A continuous-variable Bell inequality, valid for an arbitrary number of observers measuring observables with an arbitrary number of outcomes, was recently introduced in [Cavalcanti emph{et al.}, Phys. Rev. Lett. {bf 99}, 210405 (2007)]. We prove that
With the rise of quantum technologies, it is necessary to have practical and preferably non-destructive methods to measure and read-out from such devices. A current line of research towards this has focussed on the use of ancilla systems which couple
We investigate permutation-invariant continuous variable quantum states and their covariance matrices. We provide a complete characterization of the latter with respect to permutation-invariance, exchangeability and representing convex combinations o
We have recently shown that the output field in the Braunstein-Kimble protocol of teleportation is a superposition of two fields: the input one and a field created by Alices measurement and by displacement of the state at Bobs station by using the cl