ﻻ يوجد ملخص باللغة العربية
We extend to quantum mechanical systems results previously obtained for classical mechanical systems, concerning time reversibility in presence of a magnetic field. As in the classical case, results like the Onsager reciprocal relations are consequently obtained, without recourse to the Casimir modification. The quantum systems treated here are nonrelativistic, and are described by the Schr{o}dinger equation or the Pauli equation. In particular, we prove that the spin-field interaction does not break the time reversal invariance (TRI) of the dynamics, and that it does not require additional conditions for such a symmetry to hold, compared to the spinless cases.
Time reversal invariance (TRI) of particles systems has many consequences, among~which the celebrated Onsager reciprocal relations, a milestone in Statistical Mechanics dating back to 1931. Because for a long time it was believed that (TRI) dos not h
By using the wave function ansatz method, we study the energy eigenvalues and wave function for any arbitrary $m$-state in two-dimensional Schr{o}dinger wave equation with various power interaction potentials in constant magnetic and Aharonov-Bohm (A
Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by appl
We derive a general scheme to obtain quantum fluctuation relations for dynamical observables in open quantum systems. For concreteness we consider Markovian non-unitary dynamics that is unraveled in terms of quantum jump trajectories, and exploit tec
We study equilibration of an isolated quantum system by mapping it onto a network of classical oscillators in Hilbert space. By choosing a suitable basis for this mapping, the degree of locality of the quantum system reflects in the sparseness of the