ترغب بنشر مسار تعليمي؟ اضغط هنا

Reinforcement Learning to Optimize Lifetime Value in Cold-Start Recommendation

104   0   0.0 ( 0 )
 نشر من قبل Luo Ji
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recommender system plays a crucial role in modern E-commerce platform. Due to the lack of historical interactions between users and items, cold-start recommendation is a challenging problem. In order to alleviate the cold-start issue, most existing methods introduce content and contextual information as the auxiliary information. Nevertheless, these methods assume the recommended items behave steadily over time, while in a typical E-commerce scenario, items generally have very different performances throughout their life period. In such a situation, it would be beneficial to consider the long-term return from the item perspective, which is usually ignored in conventional methods. Reinforcement learning (RL) naturally fits such a long-term optimization problem, in which the recommender could identify high potential items, proactively allocate more user impressions to boost their growth, therefore improve the multi-period cumulative gains. Inspired by this idea, we model the process as a Partially Observable and Controllable Markov Decision Process (POC-MDP), and propose an actor-critic RL framework (RL-LTV) to incorporate the item lifetime values (LTV) into the recommendation. In RL-LTV, the critic studies historical trajectories of items and predict the future LTV of fresh item, while the actor suggests a score-based policy which maximizes the future LTV expectation. Scores suggested by the actor are then combined with classical ranking scores in a dual-rank framework, therefore the recommendation is balanced with the LTV consideration. Our method outperforms the strong live baseline with a relative improvement of 8.67% and 18.03% on IPV and GMV of cold-start items, on one of the largest E-commerce platform.



قيم البحث

اقرأ أيضاً

320 - Xidong Feng , Chen Chen , Dong Li 2021
Practical recommender systems experience a cold-start problem when observed user-item interactions in the history are insufficient. Meta learning, especially gradient based one, can be adopted to tackle this problem by learning initial parameters of the model and thus allowing fast adaptation to a specific task from limited data examples. Though with significant performance improvement, it commonly suffers from two critical issues: the non-compatibility with mainstream industrial deployment and the heavy computational burdens, both due to the inner-loop gradient operation. These two issues make them hard to be applied in practical recommender systems. To enjoy the benefits of meta learning framework and mitigate these problems, we propose a recommendation framework called Contextual Modulation Meta Learning (CMML). CMML is composed of fully feed-forward operations so it is computationally efficient and completely compatible with the mainstream industrial deployment. CMML consists of three components, including a context encoder that can generate context embedding to represent a specific task, a hybrid context generator that aggregates specific user-item features with task-level context, and a contextual modulation network, which can modulate the recommendation model to adapt effectively. We validate our approach on both scenario-specific and user-specific cold-start setting on various real-world datasets, showing CMML can achieve comparable or even better performance with gradient based methods yet with much higher computational efficiency and better interpretability.
94 - Yinwei Wei , Xiang Wang , Qi Li 2021
Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.
Cold-start problems are enormous challenges in practical recommender systems. One promising solution for this problem is cross-domain recommendation (CDR) which leverages rich information from an auxiliary (source) domain to improve the performance o f recommender system in the target domain. In these CDR approaches, the family of Embedding and Mapping methods for CDR (EMCDR) is very effective, which explicitly learn a mapping function from source embeddings to target embeddings with overlapping users. However, these approaches suffer from one serious problem: the mapping function is only learned on limited overlapping users, and the function would be biased to the limited overlapping users, which leads to unsatisfying generalization ability and degrades the performance on cold-start users in the target domain. With the advantage of meta learning which has good generalization ability to novel tasks, we propose a transfer-meta framework for CDR (TMCDR) which has a transfer stage and a meta stage. In the transfer (pre-training) stage, a source model and a target model are trained on source and target domains, respectively. In the meta stage, a task-oriented meta network is learned to implicitly transform the user embedding in the source domain to the target feature space. In addition, the TMCDR is a general framework that can be applied upon various base models, e.g., MF, BPR, CML. By utilizing data from Amazon and Douban, we conduct extensive experiments on 6 cross-domain tasks to demonstrate the superior performance and compatibility of TMCDR.
91 - Yanan Wang , Yong Ge , Li Li 2020
Reinforcement learning (RL) has shown great promise in optimizing long-term user interest in recommender systems. However, existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation pol icy. The challenge becomes more critical when recommending to new users who have a limited number of interactions. To that end, in this paper, we address the cold-start challenge in the RL-based recommender systems by proposing a meta-level model-based reinforcement learning approach for fast user adaptation. In our approach, we learn to infer each users preference with a user context variable that enables recommendation systems to better adapt to new users with few interactions. To improve adaptation efficiency, we learn to recover the user policy and reward from only a few interactions via an inverse reinforcement learning method to assist a meta-level recommendation agent. Moreover, we model the interaction relationship between the user model and recommendation agent from an information-theoretic perspective. Empirical results show the effectiveness of the proposed method when adapting to new users with only a single interaction sequence. We further provide a theoretical analysis of the recommendation performance bound.
A fundamental challenge for sequential recommenders is to capture the sequential patterns of users toward modeling how users transit among items. In many practical scenarios, however, there are a great number of cold-start users with only minimal log ged interactions. As a result, existing sequential recommendation models will lose their predictive power due to the difficulties in learning sequential patterns over users with only limited interactions. In this work, we aim to improve sequential recommendation for cold-start users with a novel framework named MetaTL, which learns to model the transition patterns of users through meta-learning. Specifically, the proposed MetaTL: (i) formulates sequential recommendation for cold-start users as a few-shot learning problem; (ii) extracts the dynamic transition patterns among users with a translation-based architecture; and (iii) adopts meta transitional learning to enable fast learning for cold-start users with only limited interactions, leading to accurate inference of sequential interactions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا