ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Recommendation for Cold-start Users with Meta Transitional Learning

277   0   0.0 ( 0 )
 نشر من قبل Kaize Ding
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A fundamental challenge for sequential recommenders is to capture the sequential patterns of users toward modeling how users transit among items. In many practical scenarios, however, there are a great number of cold-start users with only minimal logged interactions. As a result, existing sequential recommendation models will lose their predictive power due to the difficulties in learning sequential patterns over users with only limited interactions. In this work, we aim to improve sequential recommendation for cold-start users with a novel framework named MetaTL, which learns to model the transition patterns of users through meta-learning. Specifically, the proposed MetaTL: (i) formulates sequential recommendation for cold-start users as a few-shot learning problem; (ii) extracts the dynamic transition patterns among users with a translation-based architecture; and (iii) adopts meta transitional learning to enable fast learning for cold-start users with only limited interactions, leading to accurate inference of sequential interactions.



قيم البحث

اقرأ أيضاً

Cold-start problems are enormous challenges in practical recommender systems. One promising solution for this problem is cross-domain recommendation (CDR) which leverages rich information from an auxiliary (source) domain to improve the performance o f recommender system in the target domain. In these CDR approaches, the family of Embedding and Mapping methods for CDR (EMCDR) is very effective, which explicitly learn a mapping function from source embeddings to target embeddings with overlapping users. However, these approaches suffer from one serious problem: the mapping function is only learned on limited overlapping users, and the function would be biased to the limited overlapping users, which leads to unsatisfying generalization ability and degrades the performance on cold-start users in the target domain. With the advantage of meta learning which has good generalization ability to novel tasks, we propose a transfer-meta framework for CDR (TMCDR) which has a transfer stage and a meta stage. In the transfer (pre-training) stage, a source model and a target model are trained on source and target domains, respectively. In the meta stage, a task-oriented meta network is learned to implicitly transform the user embedding in the source domain to the target feature space. In addition, the TMCDR is a general framework that can be applied upon various base models, e.g., MF, BPR, CML. By utilizing data from Amazon and Douban, we conduct extensive experiments on 6 cross-domain tasks to demonstrate the superior performance and compatibility of TMCDR.
320 - Xidong Feng , Chen Chen , Dong Li 2021
Practical recommender systems experience a cold-start problem when observed user-item interactions in the history are insufficient. Meta learning, especially gradient based one, can be adopted to tackle this problem by learning initial parameters of the model and thus allowing fast adaptation to a specific task from limited data examples. Though with significant performance improvement, it commonly suffers from two critical issues: the non-compatibility with mainstream industrial deployment and the heavy computational burdens, both due to the inner-loop gradient operation. These two issues make them hard to be applied in practical recommender systems. To enjoy the benefits of meta learning framework and mitigate these problems, we propose a recommendation framework called Contextual Modulation Meta Learning (CMML). CMML is composed of fully feed-forward operations so it is computationally efficient and completely compatible with the mainstream industrial deployment. CMML consists of three components, including a context encoder that can generate context embedding to represent a specific task, a hybrid context generator that aggregates specific user-item features with task-level context, and a contextual modulation network, which can modulate the recommendation model to adapt effectively. We validate our approach on both scenario-specific and user-specific cold-start setting on various real-world datasets, showing CMML can achieve comparable or even better performance with gradient based methods yet with much higher computational efficiency and better interpretability.
94 - Yinwei Wei , Xiang Wang , Qi Li 2021
Recommending cold-start items is a long-standing and fundamental challenge in recommender systems. Without any historical interaction on cold-start items, CF scheme fails to use collaborative signals to infer user preference on these items. To solve this problem, extensive studies have been conducted to incorporate side information into the CF scheme. Specifically, they employ modern neural network techniques (e.g., dropout, consistency constraint) to discover and exploit the coalition effect of content features and collaborative representations. However, we argue that these works less explore the mutual dependencies between content features and collaborative representations and lack sufficient theoretical supports, thus resulting in unsatisfactory performance. In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a simple yet effective Contrastive Learning-based Cold-start Recommendation framework(CLCRec). In particular, CLCRec consists of three components: contrastive pair organization, contrastive embedding, and contrastive optimization modules. It allows us to preserve collaborative signals in the content representations for both warm and cold-start items. Through extensive experiments on four publicly accessible datasets, we observe that CLCRec achieves significant improvements over state-of-the-art approaches in both warm- and cold-start scenarios.
A common challenge for most current recommender systems is the cold-start problem. Due to the lack of user-item interactions, the fine-tuned recommender systems are unable to handle situations with new users or new items. Recently, some works introdu ce the meta-optimization idea into the recommendation scenarios, i.e. predicting the user preference by only a few of past interacted items. The core idea is learning a global sharing initialization parameter for all users and then learning the local parameters for each user separately. However, most meta-learning based recommendation approaches adopt model-agnostic meta-learning for parameter initialization, where the global sharing parameter may lead the model into local optima for some users. In this paper, we design two memory matrices that can store task-specific memories and feature-specific memories. Specifically, the feature-specific memories are used to guide the model with personalized parameter initialization, while the task-specific memories are used to guide the model fast predicting the user preference. And we adopt a meta-optimization approach for optimizing the proposed method. We test the model on two widely used recommendation datasets and consider four cold-start situations. The experimental results show the effectiveness of the proposed methods.
Recently, embedding techniques have achieved impressive success in recommender systems. However, the embedding techniques are data demanding and suffer from the cold-start problem. Especially, for the cold-start item which only has limited interactio ns, it is hard to train a reasonable item ID embedding, called cold ID embedding, which is a major challenge for the embedding techniques. The cold item ID embedding has two main problems: (1) A gap is existing between the cold ID embedding and the deep model. (2) Cold ID embedding would be seriously affected by noisy interaction. However, most existing methods do not consider both two issues in the cold-start problem, simultaneously. To address these problems, we adopt two key ideas: (1) Speed up the model fitting for the cold item ID embedding (fast adaptation). (2) Alleviate the influence of noise. Along this line, we propose Meta Scaling and Shifting Networks to generate scaling and shifting functions for each item, respectively. The scaling function can directly transform cold item ID embeddings into warm feature space which can fit the model better, and the shifting function is able to produce stable embeddings from the noisy embeddings. With the two meta networks, we propose Meta Warm Up Framework (MWUF) which learns to warm up cold ID embeddings. Moreover, MWUF is a general framework that can be applied upon various existing deep recommendation models. The proposed model is evaluated on three popular benchmarks, including both recommendation and advertising datasets. The evaluation results demonstrate its superior performance and compatibility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا