ﻻ يوجد ملخص باللغة العربية
In this paper, we study the spatial propagation dynamics of a parabolic-elliptic chemotaxis system with logistic source which reduces to the well-known Fisher-KPP equation without chemotaxis. It is known that for fast decaying initial functions, this system has a finite spreading speed. For slowly decaying initial functions, we show that the accelerating propagation will occur and chemotaxis does not affect the propagation mode determined by slowly decaying initial functions if the logistic damping is strong, that is, the system has the same upper and lower bounds of the accelerating propagation as for the classical Fisher-KPP equation. The main new idea of proving our results is the construction of auxiliary equations to overcome the lack of comparison principle due to chemotaxis.
This is part two of our study on the spreading properties of the Lotka-Volterra competition-diffusion systems with a stable coexistence state. We focus on the case when the initial data are exponential decaying. By establishing a comparison principle
This paper investigates a high-dimensional chemotaxis system with consumption of chemoattractant begin{eqnarray*} left{begin{array}{l} u_t=Delta u- ablacdot(u abla v), v_t=Delta v-uv, end{array}right. end{eqnarray*} under homogeneous boundary conditi
We investigate the propagating profiles of a degenerate chemotaxis model describing the bacteria chemotaxis and consumption of oxygen by aerobic bacteria, in particular, the effect of the initial attractant distribution on bacterial clustering. We pr
We investigate the Navier-Stokes initial boundary value problem in the half-plane $R^2_+$ with initial data $u_0 in L^infty(R^2_+)cap J_0^2(R^2_+)$ or with non decaying initial data $u_0in L^infty(R^2_+) cap J_0^p(R^2_+), p > 2$ . We introduce a tech
In this paper, we address the local well-posedness of the spatially inhomogeneous non-cutoff Boltzmann equation when the initial data decays polynomially in the velocity variable. We consider the case of very soft potentials $gamma + 2s < 0$. Our mai