ﻻ يوجد ملخص باللغة العربية
We investigate the Navier-Stokes initial boundary value problem in the half-plane $R^2_+$ with initial data $u_0 in L^infty(R^2_+)cap J_0^2(R^2_+)$ or with non decaying initial data $u_0in L^infty(R^2_+) cap J_0^p(R^2_+), p > 2$ . We introduce a technique that allows to solve the two-dimesional problem, further, but not least, it can be also employed to obtain weak solutions, as regards the non decaying initial data, to the three-dimensional Navier-Stokes IBVP. This last result is the first of its kind.
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is ac
In this paper, we investigate the nonhomogeneous boundary value problem for the steady Navier-Stokes equations in a helically symmetric spatial domain. When data is assumed to be helical invariant and satisfies the compatibility condition, we prove t
In to previous papers by the authors, classes of initial data to the three dimensional, incompressible Navier-Stokes equations were presented, generating a global smooth solution although the norm of the initial data may be chosen arbitrarily large.
In three previous papers by the two first authors, classes of initial data to the three dimensional, incompressible Navier-Stokes equations were presented, generating a global smooth solution although the norm of the initial data may be chosen arbitr
We prove that the steady--state Navier--Stokes problem in a plane Lipschitz domain $Omega$ exterior to a bounded and simply connected set has a $D$-solution provided the boundary datum $a in L^2(partialOmega)$ satisfies ${1over 2pi}|int_{partialOmega