ﻻ يوجد ملخص باللغة العربية
We report the observation of gravity-capillary waves on a torus of fluid. By means of an original technique, a stable torus is achieved by depositing water on a superhydrophobic groove with a shallow wedge-shaped channel running along its perimeter. Using a spatio-temporal optical measurement, we report the full dispersion relation of azimuthal waves propagating along the inner and outer torus borders, highlighting several branches modeled as varicose, sinuous and sloshing modes. Standing azimuthal waves are also studied leading to polygon-like patterns arising on the two torus borders with a number of sides different when a tunable decoupling of the two interfaces occurs. The quantized nature of the dispersion relation is also evidenced.
We unveil the generation of universal morphologies of fluid interfaces by radiation pressure whatever is the nature of the wave, acoustic or optical. Experimental observations reveal interface deformations endowed with step-like features that are sho
Inertia effects in magnetization dynamics are theoretically shown to result in a different type of spin waves, i.e. nutation surface spin waves, which propagate at terahertz frequencies in in-plane magnetized ferromagnetic thin films. Considering the
The nonlinear interaction of a time-harmonic acoustic wave with an anisotropic particle gives rise to the radiation force and torque effects. These phenomena are at the heart of the acoustofluidics technology, where microparticles such as cells and m
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schr{o
We consider propagation of high-frequency wave packets along a smooth evolving background flow whose evolution is described by a simple-wave type of solutions of hydrodynamic equations. In geometrical optics approximation, the motion of the wave pack