ﻻ يوجد ملخص باللغة العربية
Inertia effects in magnetization dynamics are theoretically shown to result in a different type of spin waves, i.e. nutation surface spin waves, which propagate at terahertz frequencies in in-plane magnetized ferromagnetic thin films. Considering the magnetostatic limit, i.e. neglecting exchange coupling, we calculate dispersion relation and group velocity, which we find to be slower than the velocity of conventional (precession) spin waves. In addition, we find that the nutation surface spin waves are backward spin waves. Furthermore, we show that inertia causes a decrease of the frequency of the precession spin waves, namely magnetostatic surface spin waves and backward volume magnetostatic spin waves. The magnitude of the decrease depends on the magnetic properties of the film and its geometry.
The inertial dynamics of magnetization in a ferromagnet is investigated theoretically. The analytically derived dynamic response upon microwave excitation shows two peaks: ferromagnetic and nutation resonances. The exact analytical expressions of fre
The dipolar (magnetostatic) interaction dominates the behavior of spin waves in magnetic films in the long-wavelength regime. In an in-plane magnetized film, volume modes exist with a negative group velocity (backward volume magnetostatic spin waves)
A continuum model of frustrated ferromagnets is analyzed in detail in the regime of low applied magnetic field, $H_0<1/4$, where the ground state is a spatially varying conical spiral. By changing variables to a corotating spin field, the model is re
First principles calculations show that electric fields applied to ferromagnets generate spin currents flowing perpendicularly to the electric field. Reduced symmetry in these ferromagnets enables a wide variety of such spin currents. However, the to
We report the observation of gravity-capillary waves on a torus of fluid. By means of an original technique, a stable torus is achieved by depositing water on a superhydrophobic groove with a shallow wedge-shaped channel running along its perimeter.