ترغب بنشر مسار تعليمي؟ اضغط هنا

DeepFake MNIST+: A DeepFake Facial Animation Dataset

137   0   0.0 ( 0 )
 نشر من قبل Jiajun Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The DeepFakes, which are the facial manipulation techniques, is the emerging threat to digital society. Various DeepFake detection methods and datasets are proposed for detecting such data, especially for face-swapping. However, recent researches less consider facial animation, which is also important in the DeepFake attack side. It tries to animate a face image with actions provided by a driving video, which also leads to a concern about the security of recent payment systems that reply on liveness detection to authenticate real users via recognising a sequence of user facial actions. However, our experiments show that the existed datasets are not sufficient to develop reliable detection methods. While the current liveness detector cannot defend such videos as the attack. As a response, we propose a new human face animation dataset, called DeepFake MNIST+, generated by a SOTA image animation generator. It includes 10,000 facial animation videos in ten different actions, which can spoof the recent liveness detectors. A baseline detection method and a comprehensive analysis of the method is also included in this paper. In addition, we analyze the proposed datasets properties and reveal the difficulty and importance of detecting animation datasets under different types of motion and compression quality.

قيم البحث

اقرأ أيضاً

93 - Yuezun Li , Cong Zhang , Pu Sun 2021
In recent years, the advent of deep learning-based techniques and the significant reduction in the cost of computation resulted in the feasibility of creating realistic videos of human faces, commonly known as DeepFakes. The availability of open-sour ce tools to create DeepFakes poses as a threat to the trustworthiness of the online media. In this work, we develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods and provide a convenient interface for the users. We describe the design and function of DeepFake-o-meter in this work.
While significant advancements have been made in the generation of deepfakes using deep learning technologies, its misuse is a well-known issue now. Deepfakes can cause severe security and privacy issues as they can be used to impersonate a persons i dentity in a video by replacing his/her face with another persons face. Recently, a new problem of generating synthesized human voice of a person is emerging, where AI-based deep learning models can synthesize any persons voice requiring just a few seconds of audio. With the emerging threat of impersonation attacks using deepfake audios and videos, a new generation of deepfake detectors is needed to focus on both video and audio collectively. A large amount of good quality datasets is typically required to capture the real-world scenarios to develop a competent deepfake detector. Existing deepfake datasets either contain deepfake videos or audios, which are racially biased as well. Hence, there is a crucial need for creating a good video as well as an audio deepfake dataset, which can be used to detect audio and video deepfake simultaneously. To fill this gap, we propose a novel Audio-Video Deepfake dataset (FakeAVCeleb) that contains not only deepfake videos but also respective synthesized lip-synced fake audios. We generate this dataset using the current most popular deepfake generation methods. We selected real YouTube videos of celebrities with four racial backgrounds (Caucasian, Black, East Asian, and South Asian) to develop a more realistic multimodal dataset that addresses racial bias and further help develop multimodal deepfake detectors. We performed several experiments using state-of-the-art detection methods to evaluate our deepfake dataset and demonstrate the challenges and usefulness of our multimodal Audio-Video deepfake dataset.
DeepFake detection has so far been dominated by ``artifact-driven methods and the detection performance significantly degrades when either the type of image artifacts is unknown or the artifacts are simply too hard to find. In this work, we present a n alternative approach: Identity-Driven DeepFake Detection. Our approach takes as input the suspect image/video as well as the target identity information (a reference image or video). We output a decision on whether the identity in the suspect image/video is the same as the target identity. Our motivation is to prevent the most common and harmful DeepFakes that spread false information of a targeted person. The identity-based approach is fundamentally different in that it does not attempt to detect image artifacts. Instead, it focuses on whether the identity in the suspect image/video is true. To facilitate research on identity-based detection, we present a new large scale dataset ``Vox-DeepFake, in which each suspect content is associated with multiple reference images collected from videos of a target identity. We also present a simple identity-based detection algorithm called the OuterFace, which may serve as a baseline for further research. Even trained without fake videos, the OuterFace algorithm achieves superior detection accuracy and generalizes well to different DeepFake methods, and is robust with respect to video degradation techniques -- a performance not achievable with existing detection algorithms.
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns. Recently, how to detect such forgery contents has become a hot research topic and many deepfake detection methods have been proposed. Most of them mo del deepfake detection as a vanilla binary classification problem, i.e, first use a backbone network to extract a global feature and then feed it into a binary classifier (real/fake). But since the difference between the real and fake images in this task is often subtle and local, we argue this vanilla solution is not optimal. In this paper, we instead formulate deepfake detection as a fine-grained classification problem and propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps. Moreover, to address the learning difficulty of this network, we further introduce a new regional independence loss and an attention guided data augmentation strategy. Through extensive experiments on different datasets, we demonstrate the superiority of our method over the vanilla binary classifier counterparts, and achieve state-of-the-art performance.
Existing deepfake-detection methods focus on passive detection, i.e., they detect fake face images via exploiting the artifacts produced during deepfake manipulation. A key limitation of passive detection is that it cannot detect fake faces that are generated by new deepfake generation methods. In this work, we propose FaceGuard, a proactive deepfake-detection framework. FaceGuard embeds a watermark into a real face image before it is published on social media. Given a face image that claims to be an individual (e.g., Nicolas Cage), FaceGuard extracts a watermark from it and predicts the face image to be fake if the extracted watermark does not match well with the individuals ground truth one. A key component of FaceGuard is a new deep-learning-based watermarking method, which is 1) robust to normal image post-processing such as JPEG compression, Gaussian blurring, cropping, and resizing, but 2) fragile to deepfake manipulation. Our evaluation on multiple datasets shows that FaceGuard can detect deepfakes accurately and outperforms existing methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا