ترغب بنشر مسار تعليمي؟ اضغط هنا

FakeAVCeleb: A Novel Audio-Video Multimodal Deepfake Dataset

80   0   0.0 ( 0 )
 نشر من قبل Shahroz Tariq
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While significant advancements have been made in the generation of deepfakes using deep learning technologies, its misuse is a well-known issue now. Deepfakes can cause severe security and privacy issues as they can be used to impersonate a persons identity in a video by replacing his/her face with another persons face. Recently, a new problem of generating synthesized human voice of a person is emerging, where AI-based deep learning models can synthesize any persons voice requiring just a few seconds of audio. With the emerging threat of impersonation attacks using deepfake audios and videos, a new generation of deepfake detectors is needed to focus on both video and audio collectively. A large amount of good quality datasets is typically required to capture the real-world scenarios to develop a competent deepfake detector. Existing deepfake datasets either contain deepfake videos or audios, which are racially biased as well. Hence, there is a crucial need for creating a good video as well as an audio deepfake dataset, which can be used to detect audio and video deepfake simultaneously. To fill this gap, we propose a novel Audio-Video Deepfake dataset (FakeAVCeleb) that contains not only deepfake videos but also respective synthesized lip-synced fake audios. We generate this dataset using the current most popular deepfake generation methods. We selected real YouTube videos of celebrities with four racial backgrounds (Caucasian, Black, East Asian, and South Asian) to develop a more realistic multimodal dataset that addresses racial bias and further help develop multimodal deepfake detectors. We performed several experiments using state-of-the-art detection methods to evaluate our deepfake dataset and demonstrate the challenges and usefulness of our multimodal Audio-Video deepfake dataset.



قيم البحث

اقرأ أيضاً

381 - Yapeng Tian , Dingzeyu Li , 2020
In this paper, we introduce a new problem, named audio-visual video parsing, which aims to parse a video into temporal event segments and label them as either audible, visible, or both. Such a problem is essential for a complete understanding of the scene depicted inside a video. To facilitate exploration, we collect a Look, Listen, and Parse (LLP) dataset to investigate audio-visual video parsing in a weakly-supervised manner. This task can be naturally formulated as a Multimodal Multiple Instance Learning (MMIL) problem. Concretely, we propose a novel hybrid attention network to explore unimodal and cross-modal temporal contexts simultaneously. We develop an attentive MMIL pooling method to adaptively explore useful audio and visual content from different temporal extent and modalities. Furthermore, we discover and mitigate modality bias and noisy label issues with an individual-guided learning mechanism and label smoothing technique, respectively. Experimental results show that the challenging audio-visual video parsing can be achieved even with only video-level weak labels. Our proposed framework can effectively leverage unimodal and cross-modal temporal contexts and alleviate modality bias and noisy labels problems.
Active speaker detection is an important component in video analysis algorithms for applications such as speaker diarization, video re-targeting for meetings, speech enhancement, and human-robot interaction. The absence of a large, carefully labeled audio-visual dataset for this task has constrained algorithm evaluations with respect to data diversity, environments, and accuracy. This has made comparisons and improvements difficult. In this paper, we present the AVA Active Speaker detection dataset (AVA-ActiveSpeaker) that will be released publicly to facilitate algorithm development and enable comparisons. The dataset contains temporally labeled face tracks in video, where each face instance is labeled as speaking or not, and whether the speech is audible. This dataset contains about 3.65 million human labeled frames or about 38.5 hours of face tracks, and the corresponding audio. We also present a new audio-visual approach for active speaker detection, and analyze its performance, demonstrating both its strength and the contributions of the dataset.
With the rapid development of facial manipulation techniques, face forgery has received considerable attention in multimedia and computer vision community due to security concerns. Existing methods are mostly designed for single-frame detection train ed with precise image-level labels or for video-level prediction by only modeling the inter-frame inconsistency, leaving potential high risks for DeepFake attackers. In this paper, we introduce a new problem of partial face attack in DeepFake video, where only video-level labels are provided but not all the faces in the fake videos are manipulated. We address this problem by multiple instance learning framework, treating faces and input video as instances and bag respectively. A sharp MIL (S-MIL) is proposed which builds direct mapping from instance embeddings to bag prediction, rather than from instance embeddings to instance prediction and then to bag prediction in traditional MIL. Theoretical analysis proves that the gradient vanishing in traditional MIL is relieved in S-MIL. To generate instances that can accurately incorporate the partially manipulated faces, spatial-temporal encoded instance is designed to fully model the intra-frame and inter-frame inconsistency, which further helps to promote the detection performance. We also construct a new dataset FFPMS for partially attacked DeepFake video detection, which can benefit the evaluation of different methods at both frame and video levels. Experiments on FFPMS and the widely used DFDC dataset verify that S-MIL is superior to other counterparts for partially attacked DeepFake video detection. In addition, S-MIL can also be adapted to traditional DeepFake image detection tasks and achieve state-of-the-art performance on single-frame datasets.
136 - Jiajun Huang , Xueyu Wang , Bo Du 2021
The DeepFakes, which are the facial manipulation techniques, is the emerging threat to digital society. Various DeepFake detection methods and datasets are proposed for detecting such data, especially for face-swapping. However, recent researches les s consider facial animation, which is also important in the DeepFake attack side. It tries to animate a face image with actions provided by a driving video, which also leads to a concern about the security of recent payment systems that reply on liveness detection to authenticate real users via recognising a sequence of user facial actions. However, our experiments show that the existed datasets are not sufficient to develop reliable detection methods. While the current liveness detector cannot defend such videos as the attack. As a response, we propose a new human face animation dataset, called DeepFake MNIST+, generated by a SOTA image animation generator. It includes 10,000 facial animation videos in ten different actions, which can spoof the recent liveness detectors. A baseline detection method and a comprehensive analysis of the method is also included in this paper. In addition, we analyze the proposed datasets properties and reveal the difficulty and importance of detecting animation datasets under different types of motion and compression quality.
We present a learning-based method for detecting real and fake deepfake multimedia content. To maximize information for learning, we extract and analyze the similarity between the two audio and visual modalities from within the same video. Additional ly, we extract and compare affective cues corresponding to perceived emotion from the two modalities within a video to infer whether the input video is real or fake. We propose a deep learning network, inspired by the Siamese network architecture and the triplet loss. To validate our model, we report the AUC metric on two large-scale deepfake detection datasets, DeepFake-TIMIT Dataset and DFDC. We compare our approach with several SOTA deepfake detection methods and report per-video AUC of 84.4% on the DFDC and 96.6% on the DF-TIMIT datasets, respectively. To the best of our knowledge, ours is the first approach that simultaneously exploits audio and video modalities and also perceived emotions from the two modalities for deepfake detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا