ترغب بنشر مسار تعليمي؟ اضغط هنا

Neonatal Bowel Sound Detection Using Convolutional Neural Network and Laplace Hidden Semi-Markov Model

90   0   0.0 ( 0 )
 نشر من قبل Chiranjibi Sitaula
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Abdominal auscultation is a convenient, safe and inexpensive method to assess bowel conditions, which is essential in neonatal care. It helps early detection of neonatal bowel dysfunctions and allows timely intervention. This paper presents a neonatal bowel sound detection method to assist the auscultation. Specifically, a Convolutional Neural Network (CNN) is proposed to classify peristalsis and non-peristalsis sounds. The classification is then optimized using a Laplace Hidden Semi-Markov Model (HSMM). The proposed method is validated on abdominal sounds from 49 newborn infants admitted to our tertiary Neonatal Intensive Care Unit (NICU). The results show that the method can effectively detect bowel sounds with accuracy and area under curve (AUC) score being 89.81% and 83.96% respectively, outperforming 13 baseline methods. Furthermore, the proposed Laplace HSMM refinement strategy is proven capable to enhance other bowel sound detection models. The outcomes of this work have the potential to facilitate future telehealth applications for neonatal care. The source code of our work can be found at: https://bitbucket.org/chirudeakin/neonatal-bowel-sound-classification/



قيم البحث

اقرأ أيضاً

An anomalous sound detection system to detect unknown anomalous sounds usually needs to be built using only normal sound data. Moreover, it is desirable to improve the system by effectively using a small amount of anomalous sound data, which will be accumulated through the systems operation. As one of the methods to meet these requirements, we focus on a binary classification model that is developed by using not only normal data but also outlier data in the other domains as pseudo-anomalous sound data, which can be easily updated by using anomalous data. In this paper, we implement a new loss function based on metric learning to learn the distance relationship from each class centroid in feature space for the binary classification model. The proposed multi-task learning of the binary classification and the metric learning makes it possible to build the feature space where the within-class variance is minimized and the between-class variance is maximized while keeping normal and anomalous classes linearly separable. We also investigate the effectiveness of additionally using anomalous sound data for further improving the binary classification model. Our results showed that multi-task learning using binary classification and metric learning to consider the distance from each class centroid in the feature space is effective, and performance can be significantly improved by using even a small amount of anomalous data during training.
We previously established a large lung sound database, HF_Lung_V2 (Lung_V2). We trained convolutional-bidirectional gated recurrent unit (CNN-BiGRU) networks for detecting inhalation, exhalation, continuous adventitious sound (CAS) and discontinuous adventitious sound at the recording level on the basis of Lung_V2. However, the performance of CAS detection was poor due to many reasons, one of which is the highly diversified CAS patterns. To make the original CNN-BiGRU model learn the CAS patterns more effectively and not cause too much computing burden, three strategies involving minimal modifications of the network architecture of the CNN layers were investigated: (1) making the CNN layers a bit deeper by using the residual blocks, (2) making the CNN layers a bit wider by increasing the number of CNN kernels, and (3) separating the feature input into multiple paths (the model was denoted by Multi-path CNN-BiGRU). The performance of CAS segment and event detection were evaluated. Results showed that improvement in CAS detection was observed among all the proposed architecture-modified models. The F1 score for CAS event detection of the proposed models increased from 0.445 to 0.491-0.530, which was deemed significant. However, the Multi-path CNN-BiGRU model outperformed the other models in terms of the number of winning titles (five) in total nine evaluation metrics. In addition, the Multi-path CNN-BiGRU model did not cause extra computing burden (0.97-fold inference time) compared to the original CNN-BiGRU model. Conclusively, the Multi-path CNN layers can efficiently improve the effectiveness of feature extraction and subsequently result in better CAS detection.
Near-field Acoustic Holography (NAH) is a well-known problem aimed at estimating the vibrational velocity field of a structure by means of acoustic measurements. In this paper, we propose a NAH technique based on Convolutional Neural Network (CNN). T he devised CNN predicts the vibrational field on the surface of arbitrary shaped plates (violin plates) with orthotropic material properties from a limited number of measurements. In particular, the architecture, named Super Resolution CNN (SRCNN), is able to estimate the vibrational field with a higher spatial resolution compared to the input pressure. The pressure and velocity datasets have been generated through Finite Element Method simulations. We validate the proposed method by comparing the estimates with the synthesized ground truth and with a state-of-the-art technique. Moreover, we evaluate the robustness of the devised network against noisy input data.
Previously, we established a lung sound database, HF_Lung_V2 and proposed convolutional bidirectional gated recurrent unit (CNN-BiGRU) models with adequate ability for inhalation, exhalation, continuous adventitious sound (CAS), and discontinuous adv entitious sound detection in the lung sound. In this study, we proceeded to build a tracheal sound database, HF_Tracheal_V1, containing 11107 of 15-second tracheal sound recordings, 23087 inhalation labels, 16728 exhalation labels, and 6874 CAS labels. The tracheal sound in HF_Tracheal_V1 and the lung sound in HF_Lung_V2 were either combined or used alone to train the CNN-BiGRU models for respective lung and tracheal sound analysis. Different training strategies were investigated and compared: (1) using full training (training from scratch) to train the lung sound models using lung sound alone and train the tracheal sound models using tracheal sound alone, (2) using a mixed set that contains both the lung and tracheal sound to train the models, and (3) using domain adaptation that finetuned the pre-trained lung sound models with the tracheal sound data and vice versa. Results showed that the models trained only by lung sound performed poorly in the tracheal sound analysis and vice versa. However, the mixed set training and domain adaptation can improve the performance of exhalation and CAS detection in the lung sound, and inhalation, exhalation, and CAS detection in the tracheal sound compared to positive controls (lung models trained only by lung sound and vice versa). Especially, a model derived from the mixed set training prevails in the situation of killing two birds with one stone.
Sound event detection is an important facet of audio tagging that aims to identify sounds of interest and define both the sound category and time boundaries for each sound event in a continuous recording. With advances in deep neural networks, there has been tremendous improvement in the performance of sound event detection systems, although at the expense of costly data collection and labeling efforts. In fact, current state-of-the-art methods employ supervised training methods that leverage large amounts of data samples and corresponding labels in order to facilitate identification of sound category and time stamps of events. As an alternative, the current study proposes a semi-supervised method for generating pseudo-labels from unsupervised data using a student-teacher scheme that balances self-training and cross-training. Additionally, this paper explores post-processing which extracts sound intervals from network prediction, for further improvement in sound event detection performance. The proposed approach is evaluated on sound event detection task for the DCASE2020 challenge. The results of these methods on both validation and public evaluation sets of DESED database show significant improvement compared to the state-of-the art systems in semi-supervised learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا