ﻻ يوجد ملخص باللغة العربية
We show that several types of graph drawing in the hyperbolic plane require features of the drawing to be separated from each other by sub-constant distances, distances so small that they can be accurately approximated by Euclidean distance. Therefore, for these types of drawing, hyperbolic geometry provides no benefit over Euclidean graph drawing.
Proceedings of GD2020: This volume contains the papers presented at GD~2020, the 28th International Symposium on Graph Drawing and Network Visualization, held on September 18-20, 2020 online. Graph drawing is concerned with the geometric representati
It is well-known that both the pathwidth and the outer-planarity of a graph can be used to obtain lower bounds on the height of a planar straight-line drawing of a graph. But both bounds fall short for some graphs. In this paper, we consider two othe
This is the arXiv index for the electronic proceedings of GD 2019, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
This is the arXiv index for the electronic proceedings of GD 2021, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
We investigate the problem of drawing graphs in 2D and 3D such that their edges (or only their vertices) can be covered by few lines or planes. We insist on straight-line edges and crossing-free drawings. This problem has many connections to other ch