ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Drawing and Network Visualization GD2020

178   0   0.0 ( 0 )
 نشر من قبل David Auber Dr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Proceedings of GD2020: This volume contains the papers presented at GD~2020, the 28th International Symposium on Graph Drawing and Network Visualization, held on September 18-20, 2020 online. Graph drawing is concerned with the geometric representation of graphs and constitutes the algorithmic core of network visualization. Graph drawing and network visualization are motivated by applications where it is crucial to visually analyse and interact with relational datasets. Information about the conference series and past symposia is maintained at http://www.graphdrawing.org. The 2020 edition of the conference was hosted by University Of British Columbia, with Will Evans as chair of the Organizing Committee. A total of 251 participants attended the conference.



قيم البحث

اقرأ أيضاً

This is the arXiv index for the electronic proceedings of GD 2019, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
This is the arXiv index for the electronic proceedings of GD 2021, which contains the peer-reviewed and revised accepted papers with an optional appendix. Proceedings (without appendices) are also to be published by Springer in the Lecture Notes in Computer Science series.
73 - David Eppstein 2021
We show that several types of graph drawing in the hyperbolic plane require features of the drawing to be separated from each other by sub-constant distances, distances so small that they can be accurately approximated by Euclidean distance. Therefor e, for these types of drawing, hyperbolic geometry provides no benefit over Euclidean graph drawing.
It is well-known that both the pathwidth and the outer-planarity of a graph can be used to obtain lower bounds on the height of a planar straight-line drawing of a graph. But both bounds fall short for some graphs. In this paper, we consider two othe r parameters, the (simple) homotopy height and the (simple) grid-major height. We discuss the relationship between them and to the other parameters, and argue that they give lower bounds on the straight-line drawing height that are never worse than the ones obtained from pathwidth and outer-planarity.
A emph{Stick graph} is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a `ground line, a line with slope $-1$. It is an open question to decide in polynomial time whether a given bipartite graph $G$ with bipartition $Acup B$ has a Stick representation where the vertices in $A$ and $B$ correspond to horizontal and vertical segments, respectively. We prove that $G$ has a Stick representation if and only if there are orderings of $A$ and $B$ such that $G$s bipartite adjacency matrix with rows $A$ and columns $B$ excludes three small `forbidden submatrices. This is similar to characterizations for other classes of bipartite intersection graphs. We present an algorithm to test whether given orderings of $A$ and $B$ permit a Stick representation respecting those orderings, and to find such a representation if it exists. The algorithm runs in time linear in the size of the adjacency matrix. For the case when only the ordering of $A$ is given, we present an $O(|A|^3|B|^3)$-time algorithm. When neither ordering is given, we present some partial results about graphs that are, or are not, Stick representable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا