ﻻ يوجد ملخص باللغة العربية
We investigate the problem of drawing graphs in 2D and 3D such that their edges (or only their vertices) can be covered by few lines or planes. We insist on straight-line edges and crossing-free drawings. This problem has many connections to other challenging graph-drawing problems such as small-area or small-volume drawings, layered or track drawings, and drawing graphs with low visual complexity. While some facts about our problem are implicit in previous work, this is the first treatment of the problem in its full generality. Our contribution is as follows. We show lower and upper bounds for the numbers of lines and planes needed for covering drawings of graphs in certain graph classes. In some cases our bounds are asymptotically tight; in some cases we are able to determine exact values. We relate our parameters to standard combinatorial characteristics of graphs (such as the chromatic number, treewidth, maximum degree, or arboricity) and to parameters that have been studied in graph drawing (such as the track number or the number of segments appearing in a drawing). We pay special attention to planar graphs. For example, we show that there are planar graphs that can be drawn in 3-space on a lot fewer lines than in the plane.
It is well known that any graph admits a crossing-free straight-line drawing in $mathbb{R}^3$ and that any planar graph admits the same even in $mathbb{R}^2$. For a graph $G$ and $d in {2,3}$, let $rho^1_d(G)$ denote the minimum number of lines in $m
A emph{Stick graph} is an intersection graph of axis-aligned segments such that the left end-points of the horizontal segments and the bottom end-points of the vertical segments lie on a `ground line, a line with slope $-1$. It is an open question to
We show that the asymptotic dimension of a geodesic space that is homeomorphic to a subset in the plane is at most three. In particular, the asymptotic dimension of the plane and any planar graph is at most three.
We initiate the study of the following problem: Given a non-planar graph G and a planar subgraph S of G, does there exist a straight-line drawing {Gamma} of G in the plane such that the edges of S are not crossed in {Gamma} by any edge of G? We give
Storyline visualizations show the structure of a story, by depicting the interactions of the characters over time. Each character is represented by an x-monotone curve from left to right, and a meeting is represented by having the curves of the parti