ﻻ يوجد ملخص باللغة العربية
Reduced models describing the Lagrangian dynamics of the Velocity Gradient Tensor (VGT) in Homogeneous Isotropic Turbulence (HIT) are developed under the Physics-Informed Machine Learning (PIML) framework. We consider VGT at both Kolmogorov scale and coarse-grained scale within the inertial range of HIT. Building reduced models requires resolving the pressure Hessian and sub-filter contributions, which is accomplished by constructing them using the integrity bases and invariants of VGT. The developed models can be expressed using the extended Tensor Basis Neural Network (TBNN). Physical constraints, such as Galilean invariance, rotational invariance, and incompressibility condition, are thus embedded in the models explicitly. Our PIML models are trained on the Lagrangian data from a high-Reynolds number Direct Numerical Simulation (DNS). To validate the results, we perform a comprehensive out-of-sample test. We observe that the PIML model provides an improved representation for the magnitude and orientation of the small-scale pressure Hessian contributions. Statistics of the flow, as indicated by the joint PDF of second and third invariants of the VGT, show good agreement with the ground-truth DNS data. A number of other important features describing the structure of HIT are reproduced by the model successfully. We have also identified challenges in modeling inertial range dynamics, which indicates that a richer modeling strategy is required. This helps us identify important directions for future research, in particular towards including inertial range geometry into TBNN.
A two-dimensional water wave system is examined consisting of two discrete incompressible fluid domains separated by a free common interface. In a geophysical context this is a model of an internal wave, formed at a pycnocline or thermocline in the o
According to the National Academies, a weekly forecast of velocity, vertical structure, and duration of the Loop Current (LC) and its eddies is critical for understanding the oceanography and ecosystem, and for mitigating outcomes of anthropogenic an
A physical model of a three-dimensional flow of a viscous bubbly fluid in an intermediate regime between bubble formation and breakage is presented. The model is based on mechanics and thermodynamics of a single bubble coupled to the dynamics of a vi
Numerical simulation of fluids plays an essential role in modeling many physical phenomena, such as weather, climate, aerodynamics and plasma physics. Fluids are well described by the Navier-Stokes equations, but solving these equations at scale rema
In this work we present a new physics-informed machine learning model that can be used to analyze kinematic data from an instrumented mouthguard and detect impacts to the head. Monitoring player impacts is vitally important to understanding and prote