ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics-informed machine learning improves detection of head impacts

273   0   0.0 ( 0 )
 نشر من قبل Samuel Raymond
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we present a new physics-informed machine learning model that can be used to analyze kinematic data from an instrumented mouthguard and detect impacts to the head. Monitoring player impacts is vitally important to understanding and protecting from injuries like concussion. Typically, to analyze this data, a combination of video analysis and sensor data is used to ascertain the recorded events are true impacts and not false positives. In fact, due to the nature of using wearable devices in sports, false positives vastly outnumber the true positives. Yet, manual video analysis is time-consuming. This imbalance leads traditional machine learning approaches to exhibit poor performance in both detecting true positives and preventing false negatives. Here, we show that by simulating head impacts numerically using a standard Finite Element head-neck model, a large dataset of synthetic impacts can be created to augment the gathered, verified, impact data from mouthguards. This combined physics-informed machine learning impact detector reported improved performance on test datasets compared to traditional impact detectors with negative predictive value and positive predictive values of 88% and 87% respectively. Consequently, this model reported the best results to date for an impact detection algorithm for American Football, achieving an F1 score of 0.95. In addition, this physics-informed machine learning impact detector was able to accurately detect true and false impacts from a test dataset at a rate of 90% and 100% relative to a purely manual video analysis workflow. Saving over 12 hours of manual video analysis for a modest dataset, at an overall accuracy of 92%, these results indicate that this model could be used in place of, or alongside, traditional video analysis to allow for larger scale and more efficient impact detection in sports such as American Football.


قيم البحث

اقرأ أيضاً

63 - M. K. Mudunuru , S. Karra 2019
This paper presents a physics-informed machine learning (ML) framework to construct reduced-order models (ROMs) for reactive-transport quantities of interest (QoIs) based on high-fidelity numerical simulations. QoIs include species decay, product yie ld, and degree of mixing. The ROMs for QoIs are applied to quantify and understand how the chemical species evolve over time. First, high-resolution datasets for constructing ROMs are generated by solving anisotropic reaction-diffusion equations using a non-negative finite element formulation for different input parameters. Non-negative finite element formulation ensures that the species concentration is non-negative (which is needed for computing QoIs) on coarse computational grids even under high anisotropy. The reactive-mixing model input parameters are a time-scale associated with flipping of velocity, a spatial-scale controlling small/large vortex structures of velocity, a perturbation parameter of the vortex-based velocity, anisotropic dispersion strength/contrast, and molecular diffusion. Second, random forests, F-test, and mutual information criterion are used to evaluate the importance of model inputs/features with respect to QoIs. Third, Support Vector Machines (SVM) and Support Vector Regression (SVR) are used to construct ROMs based on the model inputs. Then, SVR-ROMs are used to predict scaling of QoIs. Qualitatively, SVR-ROMs are able to describe the trends observed in the scaling law associated with QoIs. Fourth, the scaling laws exponent dependence on model inputs/features are evaluated using $k$-means clustering. Finally, in terms of the computational cost, the proposed SVM-ROMs and SVR-ROMs are $mathcal{O}(10^7)$ times faster than running a high-fidelity numerical simulation for evaluating QoIs.
We present a new physics-informed machine learning approach for the inversion of PDE models with heterogeneous parameters. In our approach, the space-dependent partially-observed parameters and states are approximated via Karhunen-Lo`eve expansions ( KLEs). Each of these KLEs is then conditioned on their corresponding measurements, resulting in low-dimensional models of the parameters and states that resolve observed data. Finally, the coefficients of the KLEs are estimated by minimizing the norm of the residual of the PDE model evaluated at a finite set of points in the computational domain, ensuring that the reconstructed parameters and states are consistent with both the observations and the PDE model to an arbitrary level of accuracy. In our approach, KLEs are constructed using the eigendecomposition of covariance models of spatial variability. For the model parameters, we employ a parameterized covariance model calibrated on parameter observations; for the model states, the covariance is estimated from a number of forward simulations of the PDE model corresponding to realizations of the parameters drawn from their KLE. We apply the proposed approach to identifying heterogeneous log-diffusion coefficients in diffusion equations from spatially sparse measurements of the log-diffusion coefficient and the solution of the diffusion equation. We find that the proposed approach compares favorably against state-of-the-art point estimates such as maximum a posteriori estimation and physics-informed neural networks.
Reduced models describing the Lagrangian dynamics of the Velocity Gradient Tensor (VGT) in Homogeneous Isotropic Turbulence (HIT) are developed under the Physics-Informed Machine Learning (PIML) framework. We consider VGT at both Kolmogorov scale and coarse-grained scale within the inertial range of HIT. Building reduced models requires resolving the pressure Hessian and sub-filter contributions, which is accomplished by constructing them using the integrity bases and invariants of VGT. The developed models can be expressed using the extended Tensor Basis Neural Network (TBNN). Physical constraints, such as Galilean invariance, rotational invariance, and incompressibility condition, are thus embedded in the models explicitly. Our PIML models are trained on the Lagrangian data from a high-Reynolds number Direct Numerical Simulation (DNS). To validate the results, we perform a comprehensive out-of-sample test. We observe that the PIML model provides an improved representation for the magnitude and orientation of the small-scale pressure Hessian contributions. Statistics of the flow, as indicated by the joint PDF of second and third invariants of the VGT, show good agreement with the ground-truth DNS data. A number of other important features describing the structure of HIT are reproduced by the model successfully. We have also identified challenges in modeling inertial range dynamics, which indicates that a richer modeling strategy is required. This helps us identify important directions for future research, in particular towards including inertial range geometry into TBNN.
Genome-wide association studies (GWAS) require accurate cohort phenotyping, but expert labeling can be costly, time-intensive, and variable. Here we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color fu ndus photographs. We used the model to predict vertical cup-to-disc ratio (VCDR), a diagnostic parameter and cardinal endophenotype for glaucoma, in 65,680 Europeans in the UK Biobank (UKB). A GWAS of ML-based VCDR identified 299 independent genome-wide significant (GWS; $Pleq5times10^{-8}$) hits in 156 loci. The ML-based GWAS replicated 62 of 65 GWS loci from a recent VCDR GWAS in the UKB for which two ophthalmologists manually labeled images for 67,040 Europeans. The ML-based GWAS also identified 92 novel loci, significantly expanding our understanding of the genetic etiologies of glaucoma and VCDR. Pathway analyses support the biological significance of the novel hits to VCDR, with select loci near genes involved in neuronal and synaptic biology or known to cause severe Mendelian ophthalmic disease. Finally, the ML-based GWAS results significantly improve polygenic prediction of VCDR and primary open-angle glaucoma in the independent EPIC-Norfolk cohort.
We develop a physics-informed machine learning approach for large-scale data assimilation and parameter estimation and apply it for estimating transmissivity and hydraulic head in the two-dimensional steady-state subsurface flow model of the Hanford Site given synthetic measurements of said variables. In our approach, we extend the physics-informed conditional Karhunen-Lo{e}ve expansion (PICKLE) method for modeling subsurface flow with unknown flux (Neumann) and varying head (Dirichlet) boundary conditions. We demonstrate that the PICKLE method is comparable in accuracy with the standard maximum a posteriori (MAP) method, but is significantly faster than MAP for large-scale problems. Both methods use a mesh to discretize the computational domain. In MAP, the parameters and states are discretized on the mesh; therefore, the size of the MAP parameter estimation problem directly depends on the mesh size. In PICKLE, the mesh is used to evaluate the residuals of the governing equation, while the parameters and states are approximated by the truncated conditional Karhunen-Lo{e}ve expansions with the number of parameters controlled by the smoothness of the parameter and state fields, and not by the mesh size. For a considered example, we demonstrate that the computational cost of PICKLE increases near linearly (as $N_{FV}^{1.15}$) with the number of grid points $N_{FV}$, while that of MAP increases much faster as $N_{FV}^{3.28}$. We demonstrated that once trained for one set of Dirichlet boundary conditions (i.e., one river stage), the PICKLE method provides accurate estimates of the hydraulic head for any value of the Dirichlet boundary conditions (i.e., for any river stage).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا